Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Hands-On Big Data Analytics with PySpark

You're reading from   Hands-On Big Data Analytics with PySpark Analyze large datasets and discover techniques for testing, immunizing, and parallelizing Spark jobs

Arrow left icon
Product type Paperback
Published in Mar 2019
Publisher Packt
ISBN-13 9781838644130
Length 182 pages
Edition 1st Edition
Languages
Tools
Concepts
Arrow right icon
Authors (3):
Arrow left icon
James Cross James Cross
Author Profile Icon James Cross
James Cross
Bartłomiej Potaczek Bartłomiej Potaczek
Author Profile Icon Bartłomiej Potaczek
Bartłomiej Potaczek
Rudy Lai Rudy Lai
Author Profile Icon Rudy Lai
Rudy Lai
Arrow right icon
View More author details
Toc

Table of Contents (15) Chapters Close

Preface 1. Installing Pyspark and Setting up Your Development Environment 2. Getting Your Big Data into the Spark Environment Using RDDs FREE CHAPTER 3. Big Data Cleaning and Wrangling with Spark Notebooks 4. Aggregating and Summarizing Data into Useful Reports 5. Powerful Exploratory Data Analysis with MLlib 6. Putting Structure on Your Big Data with SparkSQL 7. Transformations and Actions 8. Immutable Design 9. Avoiding Shuffle and Reducing Operational Expenses 10. Saving Data in the Correct Format 11. Working with the Spark Key/Value API 12. Testing Apache Spark Jobs 13. Leveraging the Spark GraphX API 14. Other Books You May Enjoy

Columnar formats – Parquet

In this section, we'll be looking at the second schema-based format, Parquet. The following topics will be covered:

  • Saving data in Parquet format
  • Loading Parquet data
  • Testing

This is a columnar format, as the data is stored column-wise and not row-wise, as we saw in the JSON, CSV, plain text, and Avro files.

This is a very interesting and important format for big data processing and for making the process faster. In this section, we will focus on adding Parquet support to Spark, saving the data into the filesystem, reloading it again, and then testing. Parquet is similar to Avro as it gives you a parquet method but this time, it is a slightly different implementation.

In the build.sbt file, for the Avro format, we need to add an external dependency, but for Parquet, we already have that dependency within Spark. So, Parquet is the way to...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image