Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Hands-On Data Structures and Algorithms with Python – Third Edition

You're reading from   Hands-On Data Structures and Algorithms with Python – Third Edition Store, manipulate, and access data effectively and boost the performance of your applications

Arrow left icon
Product type Paperback
Published in Jul 2022
Publisher Packt
ISBN-13 9781801073448
Length 496 pages
Edition 3rd Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Dr. Basant Agarwal Dr. Basant Agarwal
Author Profile Icon Dr. Basant Agarwal
Dr. Basant Agarwal
Arrow right icon
View More author details
Toc

Table of Contents (17) Chapters Close

Preface 1. Python Data Types and Structures FREE CHAPTER 2. Introduction to Algorithm Design 3. Algorithm Design Techniques and Strategies 4. Linked Lists 5. Stacks and Queues 6. Trees 7. Heaps and Priority Queues 8. Hash Tables 9. Graphs and Algorithms 10. Searching 11. Sorting 12. Selection Algorithms 13. String Matching Algorithms 14. Other Books You May Enjoy
15. Index
Appendix: Answers to the Questions

Recursion

A recursive algorithm calls itself repeatedly in order to solve the problem until a certain condition is fulfilled. Each recursive call itself spins off other recursive calls. A recursive function can be in an infinite loop; therefore, it is required that each recursive function adheres to certain properties. At the core of a recursive function are two types of cases:

  1. Base cases: These tell the recursion when to terminate, meaning the recursion will be stopped once the base condition is met
  2. Recursive cases: The function calls itself recursively, and we progress toward achieving the base criteria

A simple problem that naturally lends itself to a recursive solution is calculating factorials. The recursive factorial algorithm defines two cases: the base case when n is zero (the terminating condition) and the recursive case when n is greater than zero (the call of the function itself). A typical implementation is as follows:

def factorial(n):
 ...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image