Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Learning NumPy Array

You're reading from   Learning NumPy Array Supercharge your scientific Python computations by understanding how to use the NumPy library effectively

Arrow left icon
Product type Paperback
Published in Jun 2014
Publisher
ISBN-13 9781783983902
Length 164 pages
Edition Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Ivan Idris Ivan Idris
Author Profile Icon Ivan Idris
Ivan Idris
Arrow right icon
View More author details
Toc

Table of Contents (14) Chapters Close

Learning NumPy Array
Credits
About the Author
About the Reviewers
www.PacktPub.com
Preface
1. Getting Started with NumPy FREE CHAPTER 2. NumPy Basics 3. Basic Data Analysis with NumPy 4. Simple Predictive Analytics with NumPy 5. Signal Processing Techniques 6. Profiling, Debugging, and Testing 7. The Scientific Python Ecosystem Index

Performing Unit tests


Unit tests are automated tests that test a small piece of code, usually a function or method. Python has the PyUnit API for unit testing. As NumPy users, we can make use of the assert functions that we saw in action before.

We will write tests for a simple factorial function. The tests will check for the so-called happy path (regular conditions and is expected to always pass) and for abnormal conditions:

  1. We start by writing the factorial function:

    def factorial(n):
       if n == 0:
          return 1
    
       if n < 0:
          raise ValueError, "Unexpected negative value"
    
       return np.arange(1, n+1).cumprod()

    The code is using the arange and cumprod functions that we have already seen to create arrays and calculate the cumulative product, but we added a few checks for boundary conditions.

  2. Now we will write the unit test. Let's write a class that will contain the unit tests. It extends the TestCase class from the unittest module, which is a part of standard Python. We test for calling...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image