Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
TensorFlow 2.0 Quick Start Guide

You're reading from   TensorFlow 2.0 Quick Start Guide Get up to speed with the newly introduced features of TensorFlow 2.0

Arrow left icon
Product type Paperback
Published in Mar 2019
Publisher Packt
ISBN-13 9781789530759
Length 196 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Tony Holdroyd Tony Holdroyd
Author Profile Icon Tony Holdroyd
Tony Holdroyd
Arrow right icon
View More author details
Toc

Table of Contents (15) Chapters Close

Preface 1. Section 1: Introduction to TensorFlow 2.00 Alpha FREE CHAPTER
2. Introducing TensorFlow 2 3. Keras, a High-Level API for TensorFlow 2 4. ANN Technologies Using TensorFlow 2 5. Section 2: Supervised and Unsupervised Learning in TensorFlow 2.00 Alpha
6. Supervised Machine Learning Using TensorFlow 2 7. Unsupervised Learning Using TensorFlow 2 8. Section 3: Neural Network Applications of TensorFlow 2.00 Alpha
9. Recognizing Images with TensorFlow 2 10. Neural Style Transfer Using TensorFlow 2 11. Recurrent Neural Networks Using TensorFlow 2 12. TensorFlow Estimators and TensorFlow Hub 13. Converting from tf1.12 to tf2
14. Other Books You May Enjoy

Our first linear regression example

We will start with a simple, artificial, linear regression problem to set the scene. In this problem, we construct an artificial dataset where we first create, and hence, know, the line to which we are fitting, but then we'll use TensorFlow to find this line.

We do this as follows—after our imports and initialization, we enter a loop. Inside this loop, we calculate the overall loss (defined as the mean squared error over our dataset, y, of points). We then take the derivative of this loss with respect to our weights and bias. This produces values that we can use to adjust our weights and bias to lower the loss; this is known as gradient descent. By repeating this loop a number of times (technically called epochs), we can lower our loss to the point where it is as low as it can go, and we can use our trained model to make predictions...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image