Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Hands-On Gradient Boosting with XGBoost and scikit-learn

You're reading from   Hands-On Gradient Boosting with XGBoost and scikit-learn Perform accessible machine learning and extreme gradient boosting with Python

Arrow left icon
Product type Paperback
Published in Oct 2020
Publisher Packt
ISBN-13 9781839218354
Length 310 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Corey Wade Corey Wade
Author Profile Icon Corey Wade
Corey Wade
Arrow right icon
View More author details
Toc

Table of Contents (15) Chapters Close

Preface 1. Section 1: Bagging and Boosting
2. Chapter 1: Machine Learning Landscape FREE CHAPTER 3. Chapter 2: Decision Trees in Depth 4. Chapter 3: Bagging with Random Forests 5. Chapter 4: From Gradient Boosting to XGBoost 6. Section 2: XGBoost
7. Chapter 5: XGBoost Unveiled 8. Chapter 6: XGBoost Hyperparameters 9. Chapter 7: Discovering Exoplanets with XGBoost 10. Section 3: Advanced XGBoost
11. Chapter 8: XGBoost Alternative Base Learners 12. Chapter 9: XGBoost Kaggle Masters 13. Chapter 10: XGBoost Model Deployment 14. Other Books You May Enjoy

Summary

In this chapter, you learned some of the well-tested tips and tricks from the winners of Kaggle competitions. In addition to exploring Kaggle competitions and understanding the importance of a hold-out set, you gained essential practice in feature engineering time columns, feature engineering categorical columns, mean encoding, building non-correlated ensembles, and stacking. These advanced techniques are widespread among elite Kagglers, and they can give you an edge when developing machine learning models for research, competition, and industry.

In the next and final chapter, we will shift gears from the competitive world to the tech world, where we will build an XGBoost model from beginning to end using transformers and pipelines to complete a model ready for industry deployment.

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image