Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Hands-On Java Deep Learning for Computer Vision
Hands-On Java Deep Learning for Computer Vision

Hands-On Java Deep Learning for Computer Vision: Implement machine learning and neural network methodologies to perform computer vision-related tasks

eBook
€13.98 €19.99
Paperback
€24.99
Subscription
Free Trial
Renews at €18.99p/m

What do you get with Print?

Product feature icon Instant access to your digital eBook copy whilst your Print order is Shipped
Product feature icon Paperback book shipped to your preferred address
Product feature icon Download this book in EPUB and PDF formats
Product feature icon Access this title in our online reader with advanced features
Product feature icon DRM FREE - Read whenever, wherever and however you want
Product feature icon AI Assistant (beta) to help accelerate your learning
OR
Modal Close icon
Payment Processing...
tick Completed

Shipping Address

Billing Address

Shipping Methods
Table of content icon View table of contents Preview book icon Preview Book

Hands-On Java Deep Learning for Computer Vision

Convolutional Neural Network Architectures

In this chapter, we'll explore edge detection as one of the most fundamental and widely-used techniques in computer vision. Then, we'll look at edge detection in action, using a number of features and images, by building a Java application that detects edges on different images. As a next step, we'll detail how to use edge detection or convolution with colored RGB images so that we can capture even more features from images. We'll present them using several parameters, which will enable us to control the output of the convolution operation. Then, we'll look at a slightly different type of filter, the pooling layers, and one of the most frequently used: the max pooling layer. After that, we'll put all the pieces together for the purpose of building and training a convolution neural network. Finally, we&apos...

Understanding edge detection

Although neural networks are really powerful models, computer vision is a complex problem to solve, since we need more specialized feature detectors for images. In this section, we'll explore edge detection as one of the fundamental techniques in computer vision for neural network architectures. Then, we'll visit horizontal and vertical edge detection, and finally, we'll understand why edge detection is doing so well.

What is edge detection?

Edges are the pixels where the sight color of the pixels dramatically changes from one side to the other. For example, let's look at the following image:

The edges in the preceding screenshot are where the pixel color changes dramatically...

Building a Java edge detection application

Now, we'll see different type of filters and apply them to different images. Also, we'll explore how the neural network is using convolution or edge detection.

Types of filters

There are other types of filters apart from the vertical and horizontal filters we've seen so far:

Two other popular filters are as follows:

  • Sobel: This filter simply adds a little bit more weight or value to the middle
  • Scharr: Besides adding even more weight to the middle, this filter also adds weight to the sides

As we can see, the zeros are placed in the middle column of the Vertical, Sobel, and Scharr filters. Hence, we can say that Sobel and Scharr measure the difference between the left...

Convolution on RGB images

Let's see how convolution is done with color images, and how we can obtain multi-dimensional output matrices.

As we saw previously, a color image is represented as a three-dimensional matrix of numbers:

The third dimension is usually called all the channels. In this case, we have three channels: red, green, and blue. Considering how the convolution was done with the grayscale images, just convolving a two-dimensional matrix with one filter, one reasonable thing to do here—since we have three of the two-dimensional matrices—is to convolve with three filters:

Each of these filters will be convolved with one of the channels.

So far, we've seen 3 x 3 filters, but actually, the two dimensions can vary from x to ε.

This kind of operation will now produce three outputs:

Let's look in a bit more detail at what's happened...

Working with convolutional layers' parameters

We'll see how to increase the dimension of the output matrix by using padding, and how to greatly decrease it through use of the stride. You will recall from the previous section, that we're convolving a 6 x 6 x 3 input image with 3 x 3 filters, which gives us a 4 x 4 x 1 matrix output:

And as you may have guessed, these output dimensions can be described by a math formula, and that formula appears as follows:

In this equation, IM is just the input matrix dimension, OM is the output matrix dimension, and F refers to the filter size. So let's apply this formula:

We can do the same for the other dimension as well. Feel free to try a different size of input images with different filters, and see how this formula will actually work. You can do that even for the edge detection application. Regardless of this formula...

Pooling layers

Let's see a slightly different type of layer, pooling layers, and, more specifically, we'll go in to the details of max pooling and average pooling.

Max pooling

Let's first explore how max pooling works. Similar to the convolution, we have the same parameters, the filter size is 2 x 2, the stride defines how big the step is, and we won't use any padding here:

Max pooling simply outputs the maximum of the selected values from the filter window, and, in this case, it would be nine.

It then moves the window on the right:

In this case, it moves two steps because of the stride, and outputs the maximum of the selected values, which is three.

It then moves down two steps and it outputs eight:

...

Building and training a Convolution Neural Network

So far, we've examined all the building blocks needed to build a Convolutional Neural Network (CNN), and that's exactly what we are going to do in this section, where we explain why convolution is so efficient and widely used.

Here's the architecture of a CNN:

First, we start with a 28 x 28 grayscale image, so we have one channel that's just a black-and-white image. For now, it doesn't really matter, but these are handwritten digit images taken from the MNIST dataset that we saw in the previous chapter.

In the first layer, we'll apply a 5 x 5 filter, a convolution feed filter, with a stride of 1 and no padding, and, applying the formula we saw in the previous section will give us a 24 x 24 output matrix. But since we want a higher number of channels, in order to capture more features, we will apply...

Improving the handwritten digit recognition application

Let's see how our CNN architecture will look when written in Java. We'll also run the Java application and test the improved model from the graphical user interface. We'll draw some digits and ask models for predictions, and maybe simulate a case when a convolution will outperform the simple neural network model.

Before checking out the code, let's first look at the CNN architecture that we saw in the previous section from a different point of view:

So, we have this table here, and in the extreme left, there are the layers. Then we have these two columns, which are the activation's. So the activations are just the input, hidden layers, or convolution layers, and one activation shows the shape of the matrix dimensions, while the other shows the complete size, which is just a multiplication of the...

Summary

We hope you enjoyed learning about edge detection, and creating an application to detect the edges of complex images using different types of filters. We took an in-depth look at convolution and worked with its layers, which helped us to understand complex convolution neural networks. We saw the benefit of pooling layers in building a CNNs—they reduce the number of parameters drastically. We saw why convolution is the ultimate technique for achieving better accuracy and proved it by building and training a CNN that showed how the accuracy percentage was improving consistently over time rather than sticking at 97%, as with the simple neural networks.

In the next chapter, we'll look at transfer learning and the deep convolution neural network architecture, which will enable us to achieve state-of-the-art accuracy.

...
Left arrow icon Right arrow icon
Download code icon Download Code

Key benefits

  • Build real-world Computer Vision applications using the power of neural networks
  • Implement image classification, object detection, and face recognition
  • Know best practices on effectively building and deploying deep learning models in Java

Description

Although machine learning is an exciting world to explore, you may feel confused by all of its theoretical aspects. As a Java developer, you will be used to telling the computer exactly what to do, instead of being shown how data is generated; this causes many developers to struggle to adapt to machine learning. The goal of this book is to walk you through the process of efficiently training machine learning and deep learning models for Computer Vision using the most up-to-date techniques. The book is designed to familiarize you with neural networks, enabling you to train them efficiently, customize existing state-of-the-art architectures, build real-world Java applications, and get great results in a short space of time. You will build real-world Computer Vision applications, ranging from a simple Java handwritten digit recognition model to real-time Java autonomous car driving systems and face recognition models. By the end of this book, you will have mastered the best practices and modern techniques needed to build advanced Computer Vision Java applications and achieve production-grade accuracy.

Who is this book for?

This book is for data scientists, machine learning developers and deep learning practitioners with Java knowledge who want to implement machine learning and deep neural networks in the computer vision domain. You will need to have a basic knowledge of Java programming.

What you will learn

  • Discover neural networks and their applications in Computer Vision
  • Explore the popular Java frameworks and libraries for deep learning
  • Build deep neural networks in Java
  • Implement an end-to-end image classification application in Java
  • Perform real-time video object detection using deep learning
  • Enhance performance and deploy applications for production
Estimated delivery fee Deliver to Switzerland

Standard delivery 10 - 13 business days

€11.95

Premium delivery 3 - 6 business days

€16.95
(Includes tracking information)

Product Details

Country selected
Publication date, Length, Edition, Language, ISBN-13
Publication date : Feb 21, 2019
Length: 260 pages
Edition : 1st
Language : English
ISBN-13 : 9781789613964
Category :
Languages :

What do you get with Print?

Product feature icon Instant access to your digital eBook copy whilst your Print order is Shipped
Product feature icon Paperback book shipped to your preferred address
Product feature icon Download this book in EPUB and PDF formats
Product feature icon Access this title in our online reader with advanced features
Product feature icon DRM FREE - Read whenever, wherever and however you want
Product feature icon AI Assistant (beta) to help accelerate your learning
OR
Modal Close icon
Payment Processing...
tick Completed

Shipping Address

Billing Address

Shipping Methods
Estimated delivery fee Deliver to Switzerland

Standard delivery 10 - 13 business days

€11.95

Premium delivery 3 - 6 business days

€16.95
(Includes tracking information)

Product Details

Publication date : Feb 21, 2019
Length: 260 pages
Edition : 1st
Language : English
ISBN-13 : 9781789613964
Category :
Languages :

Packt Subscriptions

See our plans and pricing
Modal Close icon
€18.99 billed monthly
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Simple pricing, no contract
€189.99 billed annually
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just €5 each
Feature tick icon Exclusive print discounts
€264.99 billed in 18 months
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just €5 each
Feature tick icon Exclusive print discounts

Frequently bought together


Stars icon
Total 57.98
Machine Learning in Java
€32.99
Hands-On Java Deep Learning for Computer Vision
€24.99
Total 57.98 Stars icon
Banner background image

Table of Contents

7 Chapters
Introduction to Computer Vision and Training Neural Networks Chevron down icon Chevron up icon
Convolutional Neural Network Architectures Chevron down icon Chevron up icon
Transfer Learning and Deep CNN Architectures Chevron down icon Chevron up icon
Real-Time Object Detection Chevron down icon Chevron up icon
Creating Art with Neural Style Transfer Chevron down icon Chevron up icon
Face Recognition Chevron down icon Chevron up icon
Other Books You May Enjoy Chevron down icon Chevron up icon

Customer reviews

Rating distribution
Full star icon Empty star icon Empty star icon Empty star icon Empty star icon 1
(1 Ratings)
5 star 0%
4 star 0%
3 star 0%
2 star 0%
1 star 100%
Sam S. Jan 28, 2020
Full star icon Empty star icon Empty star icon Empty star icon Empty star icon 1
There are no Java source code files on this book's Github web page.Java source code files are not given in the book and very little code is discussed.in the book.
Amazon Verified review Amazon
Get free access to Packt library with over 7500+ books and video courses for 7 days!
Start Free Trial

FAQs

What is the delivery time and cost of print book? Chevron down icon Chevron up icon

Shipping Details

USA:

'

Economy: Delivery to most addresses in the US within 10-15 business days

Premium: Trackable Delivery to most addresses in the US within 3-8 business days

UK:

Economy: Delivery to most addresses in the U.K. within 7-9 business days.
Shipments are not trackable

Premium: Trackable delivery to most addresses in the U.K. within 3-4 business days!
Add one extra business day for deliveries to Northern Ireland and Scottish Highlands and islands

EU:

Premium: Trackable delivery to most EU destinations within 4-9 business days.

Australia:

Economy: Can deliver to P. O. Boxes and private residences.
Trackable service with delivery to addresses in Australia only.
Delivery time ranges from 7-9 business days for VIC and 8-10 business days for Interstate metro
Delivery time is up to 15 business days for remote areas of WA, NT & QLD.

Premium: Delivery to addresses in Australia only
Trackable delivery to most P. O. Boxes and private residences in Australia within 4-5 days based on the distance to a destination following dispatch.

India:

Premium: Delivery to most Indian addresses within 5-6 business days

Rest of the World:

Premium: Countries in the American continent: Trackable delivery to most countries within 4-7 business days

Asia:

Premium: Delivery to most Asian addresses within 5-9 business days

Disclaimer:
All orders received before 5 PM U.K time would start printing from the next business day. So the estimated delivery times start from the next day as well. Orders received after 5 PM U.K time (in our internal systems) on a business day or anytime on the weekend will begin printing the second to next business day. For example, an order placed at 11 AM today will begin printing tomorrow, whereas an order placed at 9 PM tonight will begin printing the day after tomorrow.


Unfortunately, due to several restrictions, we are unable to ship to the following countries:

  1. Afghanistan
  2. American Samoa
  3. Belarus
  4. Brunei Darussalam
  5. Central African Republic
  6. The Democratic Republic of Congo
  7. Eritrea
  8. Guinea-bissau
  9. Iran
  10. Lebanon
  11. Libiya Arab Jamahriya
  12. Somalia
  13. Sudan
  14. Russian Federation
  15. Syrian Arab Republic
  16. Ukraine
  17. Venezuela
What is custom duty/charge? Chevron down icon Chevron up icon

Customs duty are charges levied on goods when they cross international borders. It is a tax that is imposed on imported goods. These duties are charged by special authorities and bodies created by local governments and are meant to protect local industries, economies, and businesses.

Do I have to pay customs charges for the print book order? Chevron down icon Chevron up icon

The orders shipped to the countries that are listed under EU27 will not bear custom charges. They are paid by Packt as part of the order.

List of EU27 countries: www.gov.uk/eu-eea:

A custom duty or localized taxes may be applicable on the shipment and would be charged by the recipient country outside of the EU27 which should be paid by the customer and these duties are not included in the shipping charges been charged on the order.

How do I know my custom duty charges? Chevron down icon Chevron up icon

The amount of duty payable varies greatly depending on the imported goods, the country of origin and several other factors like the total invoice amount or dimensions like weight, and other such criteria applicable in your country.

For example:

  • If you live in Mexico, and the declared value of your ordered items is over $ 50, for you to receive a package, you will have to pay additional import tax of 19% which will be $ 9.50 to the courier service.
  • Whereas if you live in Turkey, and the declared value of your ordered items is over € 22, for you to receive a package, you will have to pay additional import tax of 18% which will be € 3.96 to the courier service.
How can I cancel my order? Chevron down icon Chevron up icon

Cancellation Policy for Published Printed Books:

You can cancel any order within 1 hour of placing the order. Simply contact [email protected] with your order details or payment transaction id. If your order has already started the shipment process, we will do our best to stop it. However, if it is already on the way to you then when you receive it, you can contact us at [email protected] using the returns and refund process.

Please understand that Packt Publishing cannot provide refunds or cancel any order except for the cases described in our Return Policy (i.e. Packt Publishing agrees to replace your printed book because it arrives damaged or material defect in book), Packt Publishing will not accept returns.

What is your returns and refunds policy? Chevron down icon Chevron up icon

Return Policy:

We want you to be happy with your purchase from Packtpub.com. We will not hassle you with returning print books to us. If the print book you receive from us is incorrect, damaged, doesn't work or is unacceptably late, please contact Customer Relations Team on [email protected] with the order number and issue details as explained below:

  1. If you ordered (eBook, Video or Print Book) incorrectly or accidentally, please contact Customer Relations Team on [email protected] within one hour of placing the order and we will replace/refund you the item cost.
  2. Sadly, if your eBook or Video file is faulty or a fault occurs during the eBook or Video being made available to you, i.e. during download then you should contact Customer Relations Team within 14 days of purchase on [email protected] who will be able to resolve this issue for you.
  3. You will have a choice of replacement or refund of the problem items.(damaged, defective or incorrect)
  4. Once Customer Care Team confirms that you will be refunded, you should receive the refund within 10 to 12 working days.
  5. If you are only requesting a refund of one book from a multiple order, then we will refund you the appropriate single item.
  6. Where the items were shipped under a free shipping offer, there will be no shipping costs to refund.

On the off chance your printed book arrives damaged, with book material defect, contact our Customer Relation Team on [email protected] within 14 days of receipt of the book with appropriate evidence of damage and we will work with you to secure a replacement copy, if necessary. Please note that each printed book you order from us is individually made by Packt's professional book-printing partner which is on a print-on-demand basis.

What tax is charged? Chevron down icon Chevron up icon

Currently, no tax is charged on the purchase of any print book (subject to change based on the laws and regulations). A localized VAT fee is charged only to our European and UK customers on eBooks, Video and subscriptions that they buy. GST is charged to Indian customers for eBooks and video purchases.

What payment methods can I use? Chevron down icon Chevron up icon

You can pay with the following card types:

  1. Visa Debit
  2. Visa Credit
  3. MasterCard
  4. PayPal
What is the delivery time and cost of print books? Chevron down icon Chevron up icon

Shipping Details

USA:

'

Economy: Delivery to most addresses in the US within 10-15 business days

Premium: Trackable Delivery to most addresses in the US within 3-8 business days

UK:

Economy: Delivery to most addresses in the U.K. within 7-9 business days.
Shipments are not trackable

Premium: Trackable delivery to most addresses in the U.K. within 3-4 business days!
Add one extra business day for deliveries to Northern Ireland and Scottish Highlands and islands

EU:

Premium: Trackable delivery to most EU destinations within 4-9 business days.

Australia:

Economy: Can deliver to P. O. Boxes and private residences.
Trackable service with delivery to addresses in Australia only.
Delivery time ranges from 7-9 business days for VIC and 8-10 business days for Interstate metro
Delivery time is up to 15 business days for remote areas of WA, NT & QLD.

Premium: Delivery to addresses in Australia only
Trackable delivery to most P. O. Boxes and private residences in Australia within 4-5 days based on the distance to a destination following dispatch.

India:

Premium: Delivery to most Indian addresses within 5-6 business days

Rest of the World:

Premium: Countries in the American continent: Trackable delivery to most countries within 4-7 business days

Asia:

Premium: Delivery to most Asian addresses within 5-9 business days

Disclaimer:
All orders received before 5 PM U.K time would start printing from the next business day. So the estimated delivery times start from the next day as well. Orders received after 5 PM U.K time (in our internal systems) on a business day or anytime on the weekend will begin printing the second to next business day. For example, an order placed at 11 AM today will begin printing tomorrow, whereas an order placed at 9 PM tonight will begin printing the day after tomorrow.


Unfortunately, due to several restrictions, we are unable to ship to the following countries:

  1. Afghanistan
  2. American Samoa
  3. Belarus
  4. Brunei Darussalam
  5. Central African Republic
  6. The Democratic Republic of Congo
  7. Eritrea
  8. Guinea-bissau
  9. Iran
  10. Lebanon
  11. Libiya Arab Jamahriya
  12. Somalia
  13. Sudan
  14. Russian Federation
  15. Syrian Arab Republic
  16. Ukraine
  17. Venezuela