Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Machine Learning with R Cookbook, Second Edition

You're reading from   Machine Learning with R Cookbook, Second Edition Analyze data and build predictive models

Arrow left icon
Product type Paperback
Published in Oct 2017
Publisher Packt
ISBN-13 9781787284395
Length 572 pages
Edition 2nd Edition
Languages
Tools
Arrow right icon
Authors (2):
Arrow left icon
Ashish Bhatia Ashish Bhatia
Author Profile Icon Ashish Bhatia
Ashish Bhatia
Yu-Wei, Chiu (David Chiu) Yu-Wei, Chiu (David Chiu)
Author Profile Icon Yu-Wei, Chiu (David Chiu)
Yu-Wei, Chiu (David Chiu)
Arrow right icon
View More author details
Toc

Table of Contents (15) Chapters Close

Preface 1. Practical Machine Learning with R FREE CHAPTER 2. Data Exploration with Air Quality Datasets 3. Analyzing Time Series Data 4. R and Statistics 5. Understanding Regression Analysis 6. Survival Analysis 7. Classification 1 - Tree, Lazy, and Probabilistic 8. Classification 2 - Neural Network and SVM 9. Model Evaluation 10. Ensemble Learning 11. Clustering 12. Association Analysis and Sequence Mining 13. Dimension Reduction 14. Big Data Analysis (R and Hadoop)

Performing correlations and multivariate analysis


To analyze the relationship of more than two variables, you would need to conduct multivariate descriptive statistics, which allows the comparison of factors. Additionally, it prevents the effect of a single variable from distorting the analysis. In this recipe, we will discuss how to conduct multivariate descriptive statistics using a correlation and covariance matrix.

Getting ready

Ensure that mtcars has already been loaded into a DataFrame within an R session.

How to do it...

Perform the following steps:

  1. Here, you can get the covariance matrix by inputting the first three variables in mtcars to the cov function:
        > cov(mtcars[1:3])
        Output:
                   mpg       cyldisp
        mpg  36.324103    -9.172379  -633.0972
        cyl  -9.172379     3.189516   199.6603
        disp -633.097208 199.660282 15360.7998
  1. To obtain a correlation matrix of the dataset, we input the first three variables of mtcarsto the cor function:
...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image