The SURF and SIFT keypoint detection algorithms, discussed in Chapter 8, Detecting Interest Points, define a location, an orientation, and a scale for each of the detected features. The scale factor information is useful to define the size of a window of analysis around each feature point. So, the defined neighborhood would include the same visual information no matter what the scale of the object to which the feature belongs has been pictured. This recipe will show you how to describe an interest point's neighborhood using feature descriptors. In image analysis, the visual information included in this neighborhood can be used to characterize each feature point in order to make it distinguishable from the others. Feature descriptors are usually N-dimensional vectors that describe a feature point in a way that is invariant to changes in...
Germany
Slovakia
Canada
Brazil
Singapore
Hungary
Philippines
Mexico
Thailand
Ukraine
Luxembourg
Estonia
Lithuania
Norway
Chile
United States
Great Britain
India
Spain
South Korea
Ecuador
Colombia
Taiwan
Switzerland
Indonesia
Cyprus
Denmark
Finland
Poland
Malta
Czechia
New Zealand
Austria
Turkey
France
Sweden
Italy
Egypt
Belgium
Portugal
Slovenia
Ireland
Romania
Greece
Argentina
Malaysia
South Africa
Netherlands
Bulgaria
Latvia
Australia
Japan
Russia