Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
RAG-Driven Generative AI

You're reading from   RAG-Driven Generative AI Build custom retrieval augmented generation pipelines with LlamaIndex, Deep Lake, and Pinecone

Arrow left icon
Product type Paperback
Published in Sep 2024
Publisher Packt
ISBN-13 9781836200918
Length 334 pages
Edition 1st Edition
Languages
Tools
Concepts
Arrow right icon
Author (1):
Arrow left icon
Denis Rothman Denis Rothman
Author Profile Icon Denis Rothman
Denis Rothman
Arrow right icon
View More author details
Toc

Table of Contents (14) Chapters Close

Preface 1. Why Retrieval Augmented Generation? FREE CHAPTER 2. RAG Embedding Vector Stores with Deep Lake and OpenAI 3. Building Index-Based RAG with LlamaIndex, Deep Lake, and OpenAI 4. Multimodal Modular RAG for Drone Technology 5. Boosting RAG Performance with Expert Human Feedback 6. Scaling RAG Bank Customer Data with Pinecone 7. Building Scalable Knowledge-Graph-Based RAG with Wikipedia API and LlamaIndex 8. Dynamic RAG with Chroma and Hugging Face Llama 9. Empowering AI Models: Fine-Tuning RAG Data and Human Feedback 10. RAG for Video Stock Production with Pinecone and OpenAI 11. Other Books You May Enjoy
12. Index
Appendix

The architecture of fine-tuning static RAG data

In this section, we question the usage of non-parametric RAG data when it exceeds a manageable threshold, as described in the RAG versus fine-tuning section in Chapter 1, Why Retrieval Augmented Generation?, which stated the principle of a threshold. Figure 9.1 adapts the principle to this section:

Figure 9.1: Fine-tuning threshold reached for RAG data

Notice that the processing (D2) and storage (D3) thresholds have been reached for static data versus the dynamic data in the RAG data environment. The threshold depends on each project and parameters such as:

  • The volume of RAG data to process: Embedding data requires human and machine resources. Even if we don’t embed the data, piling up static data (data that is stable over a long period of time) makes no sense.
  • The volume of RAG data to store and retrieve: At some point, if we keep stacking data up, much of it may overlap.
  • The retrievals require...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image