We covered the terms on- and off-policy previously when we looked at MC training in Chapter 2, Monte Carlo Methods. Recall that the agent didn't update its policy until after an episode. Hence, this defines the TD(0) method of learning in the last example as an off-policy learner. In our last example, it may seem that the agent is learning online but it still, in fact, trains a policy or Q table externally. That is, the agent needs to build up a policy before it can learn to make decisions and play the game. Ideally, we want our agent to learn or improve its policy as it plays through an episode. After all, we don't learn offline nor does any other biological animal. Instead, our goal will be to understand how an agent can learn using on-policy learning. On-policy learning will be covered in Chapter 5, Exploring SARSA.
Germany
Slovakia
Canada
Brazil
Singapore
Hungary
Philippines
Mexico
Thailand
Ukraine
Luxembourg
Estonia
Lithuania
Norway
Chile
United States
Great Britain
India
Spain
South Korea
Ecuador
Colombia
Taiwan
Switzerland
Indonesia
Cyprus
Denmark
Finland
Poland
Malta
Czechia
New Zealand
Austria
Turkey
France
Sweden
Italy
Egypt
Belgium
Portugal
Slovenia
Ireland
Romania
Greece
Argentina
Malaysia
South Africa
Netherlands
Bulgaria
Latvia
Australia
Japan
Russia