- Reinforcement learning (RL) is a branch of machine learning where the learning occurs via interacting with an environment.
- RL works by train and error method, unlike other ML paradigms.
- Agents are the software programs that make intelligent decisions and they are basically learners in RL.
- Policy function specifies what action to take in each state and value function specifies the value of each state.
- In model-based agent use the previous experience whereas in model-free learning there won't be any previous experience.
- Deterministic, stochastic, fully observable, partially observable, discrete continuous, episodic and non-episodic.
- OpenAI Universe provides rich environments for training RL agents.
- Refer section Applications of RL.




















































