Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Machine Learning Quick Reference
Machine Learning Quick Reference

Machine Learning Quick Reference: Quick and essential machine learning hacks for training smart data models

Arrow left icon
Profile Icon Kumar
Arrow right icon
$19.99 per month
Paperback Jan 2019 294 pages 1st Edition
eBook
$15.99 $22.99
Paperback
$32.99
Subscription
Free Trial
Renews at $19.99p/m
Arrow left icon
Profile Icon Kumar
Arrow right icon
$19.99 per month
Paperback Jan 2019 294 pages 1st Edition
eBook
$15.99 $22.99
Paperback
$32.99
Subscription
Free Trial
Renews at $19.99p/m
eBook
$15.99 $22.99
Paperback
$32.99
Subscription
Free Trial
Renews at $19.99p/m

What do you get with a Packt Subscription?

Free for first 7 days. $19.99 p/m after that. Cancel any time!
Product feature icon Unlimited ad-free access to the largest independent learning library in tech. Access this title and thousands more!
Product feature icon 50+ new titles added per month, including many first-to-market concepts and exclusive early access to books as they are being written.
Product feature icon Innovative learning tools, including AI book assistants, code context explainers, and text-to-speech.
Product feature icon Thousands of reference materials covering every tech concept you need to stay up to date.
Subscribe now
View plans & pricing
Table of content icon View table of contents Preview book icon Preview Book

Machine Learning Quick Reference

Evaluating Kernel Learning

In machine learning, pattern finding is an area that is being explored to the hilt. There are many methods and algorithms that can drive this kind of work and analysis. However, in this chapter, we will try to focus on how kernels are making a significant difference to the whole machine learning outlook. The application of kernel learning doesn't have any boundaries: starting from a simple regression problem to a computer vision classification, it has made its presence felt everywhere. Support vector machine (SVM) is one of those algorithms that happens to make use of kernel learning.

In this chapter, we will be focusing on the following concepts:

  • Concepts of vectors, linear separability, and hyperplanes
  • SVM
  • Kernel tricks
  • Gaussian process
  • Parameter optimization

Introduction to vectors

Before moving on to the core topic, we would like to build a foundation for getting there. Hence, this segment of the chapter is very important. It might look familiar to you and many of you will be cognizant about this. However, going through this channel will set the flow.

A vector is an object that has both a direction and magnitude. It is represented by an arrow and with a coordinate (x, y) in space, as shown in the following plot:

As shown in the preceding diagram, the vector OA has the coordinates (4,3)

Vector OA= (4,3)

However, it is not sufficient to define a vector just by coordinates—we also need a direction. That means the direction from the x axis.

Magnitude of the vector

...

Linear separability

Linear separability implies that if there are two classes then there will be a point, line, plane, or hyperplane that splits the input features in such a way that all points of one class are in one-half space and the second class is in the other half-space.

For example, here is a case of selling a house based on area and price. We have got a number of data points for that along with the class, which is house Sold/Not Sold:

In the preceding figure, all the N, are the class (event) of Not Sold, which has been derived based on the Price and Area of the house and all the instances of S represent the class of the house getting sold. The number of N and S represent the data points on which the class has been determined.

In the first diagram, N and S are quite close and happen to be more random, hence, it's difficult to have linear separability...

Hyperplanes 

Many of you will have guessed it right. We use hyperplanes when it comes to more than 3D. We will define it using a bit of mathematics.

A linear equation looks like this: y = ax + b has got two variables, x and y, and a y-intercept, which is b. If we rename y as x2 and x as x1, the equation comes out as x2=ax1 + b which implies ax1 - x2 + b=0. If we define 2D vectors as x= (x1,x2) and w=(a,-1) and if we make use of the dot product, then the equation becomes w.x + b = 0. 

Remember, x.y = x1y1 + x2y2.

So, a hyperplane is a set of points that satisfies the preceding equation. But how do we classify with the help of hyperplane?

We define a hypothesis function h:

h(xi) = +1 if w.xi + b ≥ 0

-1 if w.xi + b < 0

This could be equivalent to the following:

h(xi)= sign(w.xi + b) 

It could also be equivalent to the following...

SVM

Now we are ready to understand SVMs. SVM is an algorithm that enables us to make use of it for both classification and regression. Given a set of examples, it builds a model to assign a group of observations into one category and others into a second category. It is a non-probabilistic linear classifier. Training data being linearly separable is the key here. All the observations or training data are a representation of vectors that are mapped into a space and SVM tries to classify them by using a margin that has to be as wide as possible:

Let's say there are two classes A and B as in the preceding screenshot.

And from the preceding section, we have learned the following:

g(x) = w. x + b

Where:

  • w: Weight vector that decides the orientation of the hyperplane
  • b: Bias term that decides the position of the hyperplane in n-dimensional space by biasing it

The...

Kernel trick

We have already seen that SVM works smoothly when it comes to having linear separable data. Just have a look at the following figure; it depicts that vectors are not linearly separable, but the noticeable part is that it is not being separable in 2D space:

With a few adjustments, we can still make use of SVM here.

Transformation of a two-dimensional vector into a 3D vector or any other higher dimensional vector can set things right for us. The next step would be to train the SVM using a higher dimensional vector. But the question arises of how high in dimension we should go to transform the vector. What this means is if the transformation has to be a two-dimensional vector, or 3D or 4D or more. It actually depends on the which brings separability into the dataset.

...

Kernel types

We're going to explain the types of in this section.

Linear kernel

Let's say there are two vectors, x1 and x2, so the linear kernel can be defined by the following:

K(x1, x2)= x1 . x2

Polynomial kernel

If there are two vectors, x1 and x2, the linear kernel can be defined by the following:

K(x1, x2)= (x1 . x+ c)d

Where:

  • c: Constant
  • d: Degree of polynomial:
def polynomial_kernel(x1, x2, degree, constant=0): 
result = sum([x1[i] * x2[i] for i in range(len(x1))]) + constant
return...

SVM example and parameter optimization through grid search

Here, we are taking a breast cancer dataset wherein we have classified according to whether the cancer is benign/malignant.

The following is for importing all the required libraries:

import pandas as pd
import numpy as np
from sklearn import svm, datasets
from sklearn.svm import SVC
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.model_selection import GridSearchCV
from sklearn.metrics import classification_report
from sklearn.utils import shuffle
%matplotlib inline

Now, let's load the breast cancer dataset:

BC_Data = datasets.load_breast_cancer()

The following allows us to check the details of the dataset:

print(BC_Data.DESCR)

This if for splitting the dataset into train and test:

X_train, X_test, y_train, y_test = train_test_split(BC_Data.data, BC_Data.target, random_state...

Introduction to vectors


Before moving on to the core topic, we would like to build a foundation for getting there. Hence, this segment of the chapter is very important. It might look familiar to you and many of you will be cognizant about this. However, going through this channel will set the flow.

A vector is an object that has both a direction and magnitude. It is represented by an arrow and with a coordinate (x, y) in space, as shown in the following plot:

As shown in the preceding diagram, the vector OA has the coordinates (4,3)

Vector OA= (4,3)

However, it is not sufficient to define a vector just by coordinates—we also need a direction. That means the direction from the x axis.

Magnitude of the vector

The magnitude of the vector is also called the norm. It is represented by ||OA||:

To find out magnitude of this vector, we can follow the Pythagorean theorem:

OA= OB2 + AB2

= 4+ 32 

= 16 + 9

= 25

Hence:

OA = √25 = 5

||OA||= 5

So, if there is a vector x = (x1,x2,....,xn):

||x||= x1+ x22+........

Left arrow icon Right arrow icon
Download code icon Download Code

Key benefits

  • Your guide to learning efficient machine learning processes from scratch
  • Explore expert techniques and hacks for a variety of machine learning concepts
  • Write effective code in R, Python, Scala, and Spark to solve all your machine learning problems

Description

Machine learning makes it possible to learn about the unknowns and gain hidden insights into your datasets by mastering many tools and techniques. This book guides you to do just that in a very compact manner. After giving a quick overview of what machine learning is all about, Machine Learning Quick Reference jumps right into its core algorithms and demonstrates how they can be applied to real-world scenarios. From model evaluation to optimizing their performance, this book will introduce you to the best practices in machine learning. Furthermore, you will also look at the more advanced aspects such as training neural networks and work with different kinds of data, such as text, time-series, and sequential data. Advanced methods and techniques such as causal inference, deep Gaussian processes, and more are also covered. By the end of this book, you will be able to train fast, accurate machine learning models at your fingertips, which you can easily use as a point of reference.

Who is this book for?

If you’re a machine learning practitioner, data scientist, machine learning developer, or engineer, this book will serve as a reference point in building machine learning solutions. You will also find this book useful if you’re an intermediate machine learning developer or data scientist looking for a quick, handy reference to all the concepts of machine learning. You’ll need some exposure to machine learning to get the best out of this book.

What you will learn

  • Get a quick rundown of model selection, statistical modeling, and cross-validation
  • Choose the best machine learning algorithm to solve your problem
  • Explore kernel learning, neural networks, and time-series analysis
  • Train deep learning models and optimize them for maximum performance
  • Briefly cover Bayesian techniques and sentiment analysis in your NLP solution
  • Implement probabilistic graphical models and causal inferences
  • Measure and optimize the performance of your machine learning models

Product Details

Country selected
Publication date, Length, Edition, Language, ISBN-13
Publication date : Jan 31, 2019
Length: 294 pages
Edition : 1st
Language : English
ISBN-13 : 9781788830577
Category :
Languages :

What do you get with a Packt Subscription?

Free for first 7 days. $19.99 p/m after that. Cancel any time!
Product feature icon Unlimited ad-free access to the largest independent learning library in tech. Access this title and thousands more!
Product feature icon 50+ new titles added per month, including many first-to-market concepts and exclusive early access to books as they are being written.
Product feature icon Innovative learning tools, including AI book assistants, code context explainers, and text-to-speech.
Product feature icon Thousands of reference materials covering every tech concept you need to stay up to date.
Subscribe now
View plans & pricing

Product Details

Publication date : Jan 31, 2019
Length: 294 pages
Edition : 1st
Language : English
ISBN-13 : 9781788830577
Category :
Languages :

Packt Subscriptions

See our plans and pricing
Modal Close icon
$19.99 billed monthly
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Simple pricing, no contract
$199.99 billed annually
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just $5 each
Feature tick icon Exclusive print discounts
$279.99 billed in 18 months
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just $5 each
Feature tick icon Exclusive print discounts

Frequently bought together


Stars icon
Total $62.96 $90.97 $28.01 saved
Machine Learning for Finance
$43.99
Machine Learning Quick Reference
$32.99
Hands-On Unsupervised Learning with Python
$51.99
Total $62.96$90.97 $28.01 saved Stars icon
Banner background image

Table of Contents

12 Chapters
Quantifying Learning Algorithms Chevron down icon Chevron up icon
Evaluating Kernel Learning Chevron down icon Chevron up icon
Performance in Ensemble Learning Chevron down icon Chevron up icon
Training Neural Networks Chevron down icon Chevron up icon
Time Series Analysis Chevron down icon Chevron up icon
Natural Language Processing Chevron down icon Chevron up icon
Temporal and Sequential Pattern Discovery Chevron down icon Chevron up icon
Probabilistic Graphical Models Chevron down icon Chevron up icon
Selected Topics in Deep Learning Chevron down icon Chevron up icon
Causal Inference Chevron down icon Chevron up icon
Advanced Methods Chevron down icon Chevron up icon
Other Books You May Enjoy Chevron down icon Chevron up icon
Get free access to Packt library with over 7500+ books and video courses for 7 days!
Start Free Trial

FAQs

What is included in a Packt subscription? Chevron down icon Chevron up icon

A subscription provides you with full access to view all Packt and licnesed content online, this includes exclusive access to Early Access titles. Depending on the tier chosen you can also earn credits and discounts to use for owning content

How can I cancel my subscription? Chevron down icon Chevron up icon

To cancel your subscription with us simply go to the account page - found in the top right of the page or at https://subscription.packtpub.com/my-account/subscription - From here you will see the ‘cancel subscription’ button in the grey box with your subscription information in.

What are credits? Chevron down icon Chevron up icon

Credits can be earned from reading 40 section of any title within the payment cycle - a month starting from the day of subscription payment. You also earn a Credit every month if you subscribe to our annual or 18 month plans. Credits can be used to buy books DRM free, the same way that you would pay for a book. Your credits can be found in the subscription homepage - subscription.packtpub.com - clicking on ‘the my’ library dropdown and selecting ‘credits’.

What happens if an Early Access Course is cancelled? Chevron down icon Chevron up icon

Projects are rarely cancelled, but sometimes it's unavoidable. If an Early Access course is cancelled or excessively delayed, you can exchange your purchase for another course. For further details, please contact us here.

Where can I send feedback about an Early Access title? Chevron down icon Chevron up icon

If you have any feedback about the product you're reading, or Early Access in general, then please fill out a contact form here and we'll make sure the feedback gets to the right team. 

Can I download the code files for Early Access titles? Chevron down icon Chevron up icon

We try to ensure that all books in Early Access have code available to use, download, and fork on GitHub. This helps us be more agile in the development of the book, and helps keep the often changing code base of new versions and new technologies as up to date as possible. Unfortunately, however, there will be rare cases when it is not possible for us to have downloadable code samples available until publication.

When we publish the book, the code files will also be available to download from the Packt website.

How accurate is the publication date? Chevron down icon Chevron up icon

The publication date is as accurate as we can be at any point in the project. Unfortunately, delays can happen. Often those delays are out of our control, such as changes to the technology code base or delays in the tech release. We do our best to give you an accurate estimate of the publication date at any given time, and as more chapters are delivered, the more accurate the delivery date will become.

How will I know when new chapters are ready? Chevron down icon Chevron up icon

We'll let you know every time there has been an update to a course that you've bought in Early Access. You'll get an email to let you know there has been a new chapter, or a change to a previous chapter. The new chapters are automatically added to your account, so you can also check back there any time you're ready and download or read them online.

I am a Packt subscriber, do I get Early Access? Chevron down icon Chevron up icon

Yes, all Early Access content is fully available through your subscription. You will need to have a paid for or active trial subscription in order to access all titles.

How is Early Access delivered? Chevron down icon Chevron up icon

Early Access is currently only available as a PDF or through our online reader. As we make changes or add new chapters, the files in your Packt account will be updated so you can download them again or view them online immediately.

How do I buy Early Access content? Chevron down icon Chevron up icon

Early Access is a way of us getting our content to you quicker, but the method of buying the Early Access course is still the same. Just find the course you want to buy, go through the check-out steps, and you’ll get a confirmation email from us with information and a link to the relevant Early Access courses.

What is Early Access? Chevron down icon Chevron up icon

Keeping up to date with the latest technology is difficult; new versions, new frameworks, new techniques. This feature gives you a head-start to our content, as it's being created. With Early Access you'll receive each chapter as it's written, and get regular updates throughout the product's development, as well as the final course as soon as it's ready.We created Early Access as a means of giving you the information you need, as soon as it's available. As we go through the process of developing a course, 99% of it can be ready but we can't publish until that last 1% falls in to place. Early Access helps to unlock the potential of our content early, to help you start your learning when you need it most. You not only get access to every chapter as it's delivered, edited, and updated, but you'll also get the finalized, DRM-free product to download in any format you want when it's published. As a member of Packt, you'll also be eligible for our exclusive offers, including a free course every day, and discounts on new and popular titles.