Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Responsible AI in the Enterprise

You're reading from   Responsible AI in the Enterprise Practical AI risk management for explainable, auditable, and safe models with hyperscalers and Azure OpenAI

Arrow left icon
Product type Paperback
Published in Jul 2023
Publisher Packt
ISBN-13 9781803230528
Length 318 pages
Edition 1st Edition
Tools
Arrow right icon
Authors (2):
Arrow left icon
Heather Dawe Heather Dawe
Author Profile Icon Heather Dawe
Heather Dawe
Adnan Masood Adnan Masood
Author Profile Icon Adnan Masood
Adnan Masood
Arrow right icon
View More author details
Toc

Table of Contents (16) Chapters Close

Preface 1. Part 1: Bigot in the Machine – A Primer
2. Chapter 1: Explainable and Ethical AI Primer FREE CHAPTER 3. Chapter 2: Algorithms Gone Wild 4. Part 2: Enterprise Risk Observability Model Governance
5. Chapter 3: Opening the Algorithmic Black Box 6. Chapter 4: Robust ML – Monitoring and Management 7. Chapter 5: Model Governance, Audit, and Compliance 8. Chapter 6: Enterprise Starter Kit for Fairness, Accountability, and Transparency 9. Part 3: Explainable AI in Action
10. Chapter 7: Interpretability Toolkits and Fairness Measures – AWS, GCP, Azure, and AIF 360 11. Chapter 8: Fairness in AI Systems with Microsoft Fairlearn 12. Chapter 9: Fairness Assessment and Bias Mitigation with Fairlearn and the Responsible AI Toolbox 13. Chapter 10: Foundational Models and Azure OpenAI 14. Index 15. Other Books You May Enjoy

References and further reading

  1. A non-parametric test is a statistical test that does not make any assumptions about the underlying distribution of the data. Non-parametric tests are useful when data does not follow a specific distribution, such as a normal distribution, or when the distribution is unknown. These tests rely on the ranks or order of the data rather than the actual values, making them more robust to outliers and less sensitive to the shape of the data distribution. Examples of non-parametric tests include the Wilcoxon rank-sum test, Kruskal-Wallis test, and the KS test.
  2. The coefficient of determination, often denoted as R², is a statistical measure that represents the proportion of the variance in the dependent variable that can be explained by the independent variable(s) in a regression model. In other words, R² indicates how well the regression model fits the observed data. It ranges from 0 to 1, with a higher value suggesting a better fit. If R&...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image