Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Transformers for Natural Language Processing

You're reading from   Transformers for Natural Language Processing Build, train, and fine-tune deep neural network architectures for NLP with Python, Hugging Face, and OpenAI's GPT-3, ChatGPT, and GPT-4

Arrow left icon
Product type Paperback
Published in Mar 2022
Publisher Packt
ISBN-13 9781803247335
Length 602 pages
Edition 2nd Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Denis Rothman Denis Rothman
Author Profile Icon Denis Rothman
Denis Rothman
Arrow right icon
View More author details
Toc

Table of Contents (25) Chapters Close

Preface 1. What are Transformers? FREE CHAPTER 2. Getting Started with the Architecture of the Transformer Model 3. Fine-Tuning BERT Models 4. Pretraining a RoBERTa Model from Scratch 5. Downstream NLP Tasks with Transformers 6. Machine Translation with the Transformer 7. The Rise of Suprahuman Transformers with GPT-3 Engines 8. Applying Transformers to Legal and Financial Documents for AI Text Summarization 9. Matching Tokenizers and Datasets 10. Semantic Role Labeling with BERT-Based Transformers 11. Let Your Data Do the Talking: Story, Questions, and Answers 12. Detecting Customer Emotions to Make Predictions 13. Analyzing Fake News with Transformers 14. Interpreting Black Box Transformer Models 15. From NLP to Task-Agnostic Transformer Models 16. The Emergence of Transformer-Driven Copilots 17. The Consolidation of Suprahuman Transformers with OpenAI’s ChatGPT and GPT-4 18. Other Books You May Enjoy
19. Index
Appendix I — Terminology of Transformer Models 1. Appendix II — Hardware Constraints for Transformer Models 2. Appendix III — Generic Text Completion with GPT-2 3. Appendix IV — Custom Text Completion with GPT-2 4. Appendix V — Answers to the Questions

Why GPUs are so special

A clue to GPU-driven design emerges in the The architecture of multi-head attention section of Chapter 2, Getting Started with the Architecture of the Transformer Model.

Attention is defined as “Scaled Dot-Product Attention,” which is represented in the following equation into which we plug Q, K, and V:

We can now conclude the following:

  • Attention heads are designed for parallel computing
  • Attention heads are based on matmul, matrix multiplication
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image