Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Unreal Engine 4 AI Programming Essentials
Unreal Engine 4 AI Programming Essentials

Unreal Engine 4 AI Programming Essentials: Create responsive and intelligent game AI using Blueprints in Unreal Engine 4

eBook
$20.98 $29.99
Paperback
$38.99
Subscription
Free Trial
Renews at $19.99p/m
:

What do you get with a Packt Subscription?

Free for first 7 days. $19.99 p/m after that. Cancel any time!
Product feature icon Unlimited ad-free access to the largest independent learning library in tech. Access this title and thousands more!
Product feature icon 50+ new titles added per month, including many first-to-market concepts and exclusive early access to books as they are being written.
Product feature icon Innovative learning tools, including AI book assistants, code context explainers, and text-to-speech.
Product feature icon Thousands of reference materials covering every tech concept you need to stay up to date.
Subscribe now
View plans & pricing
Table of content icon View table of contents Preview book icon Preview Book

Unreal Engine 4 AI Programming Essentials

Chapter 1. Introduction to Game AI

This chapter will introduce the basic idea of Artificial Intelligence (AI) and how it directly affects and enhances the gaming experience. You will learn the differences between the traditional and also the game-specific goals of AI. We will introduce various techniques used in game AI, including navigation, Behavior Tree, sensor systems, and so on. You will learn in brief which tools we utilize for AI within Unreal Engine 4's editor. After this chapter, readers will gain a basic understanding of how AI can be applied to game development for a better gaming experience. The AI techniques that we will briefly cover here will be taught in the subsequent chapters.

Game Artificial Intelligence

When you first think of Artificial Intelligence, robots immediately come to mind. AI is derived from the idea of intelligence that helps living creatures make decisions. We take inputs, context, and our personal reasoning to decide on the actions we will perform. In AI, we try to virtually replicate this process to create systems that can have autonomous behavior. Assuming you have a fairly extensive gaming history, you would know that game AI is generally not smarter than some older games where your enemy may get stuck in a corner and fail to get out. Game AI now is by no means comparable to the general AI in scientific research. Game AI is designed to work in a well-controlled, predicable virtual world. It mainly consists of hardcoded rules to allow game actors to make proper actions corresponding to different situations. Game AI is meant to be fun, so it only needs to seem smart to the player within this context.

It is fair to say that AI is a very broad topic, so implementing every possible technique isn't the plan. So, it goes without saying that we will only cover what is necessary for you to create an awesome game AI. Keep in mind, though, that we will only touch on very specific game AI techniques; the world of AI is as vast as it is great.

How AI affects the gaming experience

Players seek a realistic and immersive experience in games. AI plays a huge part in forming this gaming experience by bringing realism and fun to the virtual world. Imagine that you are accompanied by a dog as you walk around or a flock of birds scatters when you make some noise. An enemy opponent is perhaps the most common and important implementation of game AI. The few types of game AI—navigating, fighting, assisting, or analytical—add the missing elements to other players to make them feel real and challenging to compete. This dates back to when it was used most notably in Chess, Nim, Pong, and Pac-Man. Up until now, it has been used in a war frame, with procedurally built levels. As the modern game design moves quickly by introducing new features to game play, such as the open world, massive in-game characters, and social interaction, it also introduces problems because these features cause AI decision making to require more input in unpredictable environments. Even now, AAA titles have their own complications with AI that result in poor user satisfaction. We will introduce in the following sections some powerful techniques to help create this important AI module and discuss how they are implemented in Unreal Engine.

Techniques and practices of game AI

There exist many techniques to cover different aspects in game AI, from fundamental movement to advanced environment sensing and decision making. Let's look at them one by one.

Navigation

Navigation for AI is usually built up of the following tools:

  • Navigation Mesh: Using tools such as Navigation Mesh, also known as NavMesh, you can designate areas in which AI can traverse. NavMesh is a simplified polygonal representation of a level (the green region in the following screenshot), where each polygon acts as a single node connected to its nearby ones. Usually, this process is automated and doesn't require designers to place nodes manually. Using special tools in Unreal, they analyze the geometry of the level and generate the most optimized Navigation Mesh accordingly. The purpose, of course, is to determine the playable areas in the level by the game agents. Note that this is the only path-finding technique available; we will use NavMesh in the examples provided in this book because it works well in this demonstration.
  • Path Following (Path nodes): A similar solution to NavMesh, Path nodes can designate the space in which the AI traverses:
    Navigation
  • Behavior Tree: Using Behavior Tree to influence your AI's next destination can create a more varied player experience. It not only calculates its requested destination, but also decides whether it should enter the screen with a cart wheeling double-back flip, no hands, or the triple somersault and jazz hands.
  • Steering behaviors: Steering behaviors affect the way AI moves while navigating to avoid obstacles. This also means using Steering to create formations with your fleets that you have set to attack the king's wall. Steering can be used in many ways to influence the movement of the character.
  • Sensory systems: Sensory systems can provide critical details, such as the nearby players, sound levels, nearby cover, and many other variables of the environment that can alter movement. It's critical that your AI understands the changing environment so that it doesn't break the illusion of being a real opponent.

While all these components aren't necessary to achieve AI navigation, they all provide critical feedback, which can affect the navigation. Navigating within a world is limited only by pathways within the game. We can see an example of group behavior with several members following a leader here:

Navigation

Achieving realistic movement with Steering

When you think of what Steering does for a car, you would be right to imagine the same idea applied to game AI navigation. Steering influences the movement of AI as it goes to its next destination. The influences can be supplied as necessary, but we will go over the most commonly used. Avoidance is used to essentially avoid colliding with oncoming AI. Flocking is another key factor in steering and is useful in simulating interesting group movement, such as a complete panic situation, or a school of fish. The goal of Steering behaviors is to achieve realistic movement and behavior within the player's world.

Creating a character with randomness and probability

AI with character is what randomness and probability add to the bot's decision making abilities. If a bot attacked you in the same way, always entered the scene in the same way, and annoyed you with its laugh after every successful hit, it wouldn't make for a unique experience. Using randomness and probability, you can instead make the AI laugh based on probability or introduce randomness to the AI's skill of choice. Another great by-product of applying randomness and probability is that it allows you to introduce levels of difficulty or lower the chance of missing the skill cast, and even allows bots to aim more precisely. If you have bots who wander around looking for enemies, probability, and randomness could be used to work with the bot's sensory input to make a more rational decision.

Creating complex decision making with Behavior Tree

Finite State Machines (FSM) is a model to define how a finite number of states transit among each other. For example, this allows it to go from gathering to searching and then attacking, as shown in the following image. Behavior trees are similar, but they allow more flexibility. A behavior tree allows hierarchical FSM, which introduces another layer of decisions. So, the bot decides among branches of behaviors that define the state it is in. There is a tool provided by UE4 called Behavior Tree. This editor tool allows us to modify AI behavior quickly and with ease.

Here's a diagram of the FSM model:

Creating complex decision making with Behavior Tree

Let's take a look at the components of Behavior Tree:

Creating complex decision making with Behavior Tree

Now, we will discuss the components found within UE4 Behavior Tree.

Root

This node is the beginning node that sends the signal to the next node in the tree. This connects to a composite, which begins your first tree. What you may notice is that you are required to use a composite first to define a tree and then to create a task for this tree. This is because hierarchical FSM creates branches of states. These states will be populated with other states or tasks. This allows an easy transition among multiple states. You can see what a root node looks like as shown in the following screenshot:

Root

Decorators

Decorators are conditional statements (the blue part on top of a node) that control whether or not a branch in the tree or even a single node can be executed. I used a decorator in the AI we will make to tell it to update to the next available route.

In the following image, you can note the Attack & Destroy decorator that defines the state on top of the composite. This state includes two tasks, Attack Enemy and Move To Enemy, which also has a decorator telling it to execute only when the bot state is Search:

Decorators

In the preceding screenshot, you can note the Attack & Destroy decorator that defines the state on top of the composite. This state includes two tasks, Attack Enemy and Move To Enemy, which also has a decorator telling it to execute only when the bot state is Search.

Composites

These are the beginning points of the states. They define how the state will behave with returns and execution flow. They have three main types: Selector, Sequence, and Simple Parallel. This beginning branch has a conditional statement, if the state is equal or greater than Search state:

Selector executes each of its children from left to right and doesn't fail; however, it returns success when one of its children returns success. So, this is good for a state that doesn't check for successfully executed nodes. The following screenshot shows an example of Selector:

Composites

Sequence executes its children in a similar fashion to Selector but returns fail when one of its children returns fail. This means that it's required that all nodes return success to complete the sequence. You can see a Sequence node in the following screenshot:

Composites

Last but not least, Simple Parallel allows you to execute a task and a tree essentially at the same time. This is great for creating a state that requires another task to always be called. To set it up, you need to first connect it to a task that it will execute. The second task or state connected continues to be called with the first task until the first task returns success.

Services

Services run as long as the composite it is added to stays activated. They tick at the intervals you set within the properties. They have another float property called Tick Interval that allows you to control how often this service is executed in the background. Services are used to modify the state of AI in most cases because it's always called. For example, in the bot that we will create, we will add a service to the first branch of the tree so that it's called without interruption and will be able to maintain the state that the bot should be in at any given movement. The green node in the following screenshot is a service with important information explicitly:

Services

This service, called Detect Enemy, actually runs a deviating cycle that updates Blackboard variables such as State and Enemy Actor.

Tasks

Tasks do the dirty work and report success or failed if it's necessary. They have blueprint nodes that can be referred to in Behavior Tree. There are two types of nodes that you'll use most often when working with Task: Event Receive Execute, which receives the signal to execute the connected scripts, and Finish Execute, which sends the signal back and returns true or false on success. This is important when making a task meant for the Sequence composite node.

Blackboard

A Blackboard is an asset to store the variables to be used within the AI Behavior Tree. They are created outside Behavior Tree. In our example, we will store an enumeration variable for the state in the State, EnemyActor object to hold the currently targeted enemy, and Route to store the current route position that the AI is requested to travel to, just to name a few. You can see all current variables as keys in Blackboard panel as follows:

Blackboard

They work just by setting a public variable of a node to one of the available Blackboard variables in the drop-down menu. The naming convention in the following screenshot makes this process streamlined:

Blackboard

Sensory systems

A sensory system usually consists of several modules, such as sight, sound, and memory, to help the AI capture information about the environment. A bot can maintain the illusion of intelligence using sounds within their environment to make a deliberate risk assessment before engaging a hazardous threat or aiding a nearby teammate who is calling for help. The use of memory will allow the bot to avoid an area where it remembers seeing a severe threat or rush back to an area where it last saw its group. Creating a sensory system in the case of an enemy player is heavily based on the environment where the AI fights the player. It needs to be able to find cover, evade the enemy, get ammo, and other features that you feel create immersive AI for your game. A game with AI that challenges the player creates a unique individual experience. A good sensory system contributes critical information that makes for reactive AI. In this project, we will use the sensory system to detect the pawns that the AI can see. We will also use functions to check for the line of sight of the enemy. We will check whether there is another pawn in the way of our path. We can check for cover and other resources within the area.

Machine learning

Machine learning is a branch on its own. This technique allows AI to learn from situations and simulations. Inputs are taken from the environment, including the context in which the bot allows it to make decisive actions. In machine learning, the inputs are put within a classifier that can predict a set of outputs with a certain level of certainty. Classifiers can be combined into ensembles to increase the accuracy of probabilistic prediction. We won't dig deep into this subject, but there exist a vast amount of resources for studying machine learning, ranging from text books (Pattern Recognition and Machine Learning by Christopher M. Bishop, Springer) to online courses (Machine Learning on coursera.org).

Tracing

Tracing allows another actor within the world to detect objects by ray tracing. A single line trace is sent out, and if it collides with an actor, the actor is returned along with information on the impact. Tracing is used for many reasons; one way it is used in FPS is to detect hits. Are you familiar with the hit box? When your player shoots in a game, a trace is shot out that collides with the opponent's hit box, determining the damage to the player, and if you're skillful enough, it results in death. Other shapes available for traces, such as spheres, capsules, and boxes, allow tracing for different situations. Recently, I used Box Trace for my car to detect objects near it.

Influence Mapping

Influence Mapping isn't a finite approach; it's the idea that specific locations on the map would be attributed information that directly influences the player or AI. An example of using Influence Mapping with AI is presence falloff. Let's say we have other enemy AI in a group; their presence map would create a radial circle around the group with the intensity based on the size of the group. This way, the other AI knows by entering this area that they're entering a zone occupied by other enemy AI.

Practical information isn't the only thing people use it for, so just understand that it's meant to provide another level of input to help your bot make more additional decisions. As shown in the following image, different colors represent zones occupied by different types of AI, and color intensity indicates the influence with respect to each AI character:

Influence Mapping

Practical information isn't the only thing people use it for, so just understand that it's meant to provide another level of input to help your bot make more additional decisions.

Unreal Engine 4 tools

Unreal Engine 4 provides a complete suite of tools to add common AI capability to your game. We will go into the details of each tool within this book. Here is a list of the tools that are covered:

  • Behavior Tree: This is used to create different states and the logic behind AI.
  • Navigation Component: This handles movement for AI.
  • Blackboard Asset: These are used to store information. They act as the local variable for AI.
  • Enumeration: This is used to create states, which you can alternate between.
  • Target Point: Our Waypoints class is derived from the Target Point class, which we will use to create a basic form of Path node.
  • AI Controller and Character: This controller will handle communication between the world and controlled pawn for AI.
  • Navigation Volumes: This is used to create Navigation Mesh in the environment to enable Path Finding for AI.

Let's look at the following screenshot:

Unreal Engine 4 tools

There are two types of NavMesh volume. The first, the NavMesh Bounds volume, defines the area for NavMesh. The Nav Modifier volume, when supplied with a Nav Area class, affects the NavMesh Bounds volume's navigation attributes where the two intersect.

Summary

In this chapter, we started by introducing game AI and discussing why it is important for our gaming experience. Then, we illustrated most of the used game AI techniques and what they are capable of. The corresponding UE4 tools for game AI were also mentioned to provide a bigger picture of the content we will cover throughout this book. In the next chapter, we will create our basic AI by setting up an AI-controlled player and adding some simple behavior to it.

Left arrow icon Right arrow icon

Key benefits

  • Understand and apply your Game AI better through various projects such as adding randomness and probability, and introducing movement
  • Configure and debug Game AI logic using multiple methodologies
  • Bridge the gap between your knowledge and Game AI in Unreal Engine 4

Description

Unreal Engine is a powerful game development engine that provides rich functionalities to create 2D and 3D games. Developers have the opportunity to build cross-platform mobile and desktop games from scratch. This book will show you how to apply artificial intelligence (AI) techniques to your Unreal project using blueprints as your scripting language. You will start with an introduction to AI, and learn how it is applied to gaming. Then you'll jump right in and create a simple AI bot and apply basic behaviors to allow it to move randomly. As you progress, you'll find out how to implement randomness and probability traits. Using NavMesh, you will impart navigation components such as character movement, MoveTo nodes, settings, and world objects, and implement Behavior Trees. At the end of the book, you will troubleshoot any issues that might crop up while building the game.

Who is this book for?

This book is for programmers and artists who want to expand their knowledge of game AI in relation to Unreal Engine 4. You are recommended to have some experience of exploring Unreal Engine 4 prior to this book because we jump straight into game AI.

What you will learn

  • ? Understand the fundamental components of game AI within Unreal Engine 4
  • ? Skillfully introduce game AI within Unreal Engine 4
  • ? Configure, customize, and assign navigation and AI components to your pawn
  • ? Create, debug, and analyze game AI behavior
  • ? Design responsive game AI using the Behavior Tree methodology
  • ? Create smart objects designed to interact with AI
  • ? Utilize advanced AI features within your project to maximize the user experience

Product Details

Country selected
Publication date, Length, Edition, Language, ISBN-13
Publication date : Mar 18, 2016
Length: 188 pages
Edition : 1st
Language : English
ISBN-13 : 9781784393120
Languages :
Tools :
:

What do you get with a Packt Subscription?

Free for first 7 days. $19.99 p/m after that. Cancel any time!
Product feature icon Unlimited ad-free access to the largest independent learning library in tech. Access this title and thousands more!
Product feature icon 50+ new titles added per month, including many first-to-market concepts and exclusive early access to books as they are being written.
Product feature icon Innovative learning tools, including AI book assistants, code context explainers, and text-to-speech.
Product feature icon Thousands of reference materials covering every tech concept you need to stay up to date.
Subscribe now
View plans & pricing

Product Details

Publication date : Mar 18, 2016
Length: 188 pages
Edition : 1st
Language : English
ISBN-13 : 9781784393120
Languages :
Tools :

Packt Subscriptions

See our plans and pricing
Modal Close icon
$19.99 billed monthly
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Simple pricing, no contract
$199.99 billed annually
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just $5 each
Feature tick icon Exclusive print discounts
$279.99 billed in 18 months
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just $5 each
Feature tick icon Exclusive print discounts

Frequently bought together


Stars icon
Total $ 140.97
Unreal Engine 4 AI Programming Essentials
$38.99
3D Game Design with Unreal Engine 4 and Blender
$46.99
Unreal Engine Game Development Blueprints
$54.99
Total $ 140.97 Stars icon
Banner background image

Table of Contents

10 Chapters
1. Introduction to Game AI Chevron down icon Chevron up icon
2. Creating Basic AI Chevron down icon Chevron up icon
3. Adding Randomness and Probability Chevron down icon Chevron up icon
4. Introducing Movement Chevron down icon Chevron up icon
5. Giving AI Choices Chevron down icon Chevron up icon
6. How Does Our AI Sense? Chevron down icon Chevron up icon
7. More Advanced Movement Chevron down icon Chevron up icon
8. Creating Patrol, Chase, and Attack AI Chevron down icon Chevron up icon
9. What Have We Learned? Chevron down icon Chevron up icon
Index Chevron down icon Chevron up icon

Customer reviews

Top Reviews
Rating distribution
Full star icon Full star icon Half star icon Empty star icon Empty star icon 2.6
(12 Ratings)
5 star 25%
4 star 16.7%
3 star 0%
2 star 8.3%
1 star 50%
Filter icon Filter
Top Reviews

Filter reviews by




Andrew McLennan-Murray Jul 22, 2017
Full star icon Full star icon Full star icon Full star icon Full star icon 5
This book gives a good introduction to the built in AI systems in UE4. Besides this book, Epic's documentation, and some user created docs, you'll be hard pressed to find more in one text. After going through the material I realized some of what I needed to do was not built in to UE. I reached out directly to the author. He was extremely knowledgeable and helpful in guiding me toward a solution and more resources.
Amazon Verified review Amazon
Peter Newton Apr 16, 2017
Full star icon Full star icon Full star icon Full star icon Full star icon 5
If anyone has any issues with my product, email [email protected] for any explanations or concerns. I will not be able to revise this copy of the book as this is now allowed by the publisher. When I first wrote this I just began as an instructor, so I apologies as the teaching quality is sub-par to what I capable of doing now. I have learned a lot since I first wrote this book over nearly 2 years ago.
Amazon Verified review Amazon
Hugo May 15, 2016
Full star icon Full star icon Full star icon Full star icon Full star icon 5
Unreal engine is a powerful AAA cross platform game engine that enable you to develop high quality games, this book teach me how to use blueprints visual tool to build my game logic, this is amazing how much you can achieve, Unreal already have a great set of tools that provide common AI, this book explain some of them, enabling me to apply their in my game easily without any line of code, I like to code, but to implement AI only in code I would have to spend much more time and effort. The book starts from foundations of AI in game development, after that you will start from basic techniques, teaching how these features work, giving you the idea of where to use it and the possibilities that you achieve combining these features with other to create more complex interesting behaviors like movements, randomness, probabilities, behavior trees, sensors, path followings and others. This can make your game so much fun and immersive, your players will have a much better gaming experience and you be proud of your work. This book has a great structure and if you never worked with game AI programming in Unreal Engine you will feel comfortable as you read this because the author has explained almost from scratch all the concepts and techniques, I think this way you learn for sure and be able to extend what you know, the game AI is almost limitless.
Amazon Verified review Amazon
Fernando M. Jul 18, 2016
Full star icon Full star icon Full star icon Full star icon Empty star icon 4
Good explanation of all AI background in blueprint domain. The book is synthetic and essential describes only one example for each argument,but effective.
Amazon Verified review Amazon
cookie Feb 16, 2021
Full star icon Full star icon Full star icon Full star icon Empty star icon 4
Saw some upset comment, thus understand their feelings. I decided to give a read given that I realize my BP was rusty understanding level, the author did display some good technique like for instance using the the FIND with the Give Access Node and Cast <3personChar>. I find this bewildering as there is no explanation but after spending 8hours of researching, begin to understand the logic behind it. It basically just to compare the CharArrray Get access variable to the Possess Pawn Cast <3PersonChar> and provide access to the waypoint actors for the "Approved" pawn.Another given example was class = class. If I was a beginner i probably wun understand this either. It basically to boolean if the class IS equal to the matched class actor.Hope that this will not discourage the author as it covers the basics of AI in technical way, and I appreciate the techniques they shared. Hopefully they can come up another Book on AI with better explanation.
Amazon Verified review Amazon
Get free access to Packt library with over 7500+ books and video courses for 7 days!
Start Free Trial

FAQs

What is included in a Packt subscription? Chevron down icon Chevron up icon

A subscription provides you with full access to view all Packt and licnesed content online, this includes exclusive access to Early Access titles. Depending on the tier chosen you can also earn credits and discounts to use for owning content

How can I cancel my subscription? Chevron down icon Chevron up icon

To cancel your subscription with us simply go to the account page - found in the top right of the page or at https://subscription.packtpub.com/my-account/subscription - From here you will see the ‘cancel subscription’ button in the grey box with your subscription information in.

What are credits? Chevron down icon Chevron up icon

Credits can be earned from reading 40 section of any title within the payment cycle - a month starting from the day of subscription payment. You also earn a Credit every month if you subscribe to our annual or 18 month plans. Credits can be used to buy books DRM free, the same way that you would pay for a book. Your credits can be found in the subscription homepage - subscription.packtpub.com - clicking on ‘the my’ library dropdown and selecting ‘credits’.

What happens if an Early Access Course is cancelled? Chevron down icon Chevron up icon

Projects are rarely cancelled, but sometimes it's unavoidable. If an Early Access course is cancelled or excessively delayed, you can exchange your purchase for another course. For further details, please contact us here.

Where can I send feedback about an Early Access title? Chevron down icon Chevron up icon

If you have any feedback about the product you're reading, or Early Access in general, then please fill out a contact form here and we'll make sure the feedback gets to the right team. 

Can I download the code files for Early Access titles? Chevron down icon Chevron up icon

We try to ensure that all books in Early Access have code available to use, download, and fork on GitHub. This helps us be more agile in the development of the book, and helps keep the often changing code base of new versions and new technologies as up to date as possible. Unfortunately, however, there will be rare cases when it is not possible for us to have downloadable code samples available until publication.

When we publish the book, the code files will also be available to download from the Packt website.

How accurate is the publication date? Chevron down icon Chevron up icon

The publication date is as accurate as we can be at any point in the project. Unfortunately, delays can happen. Often those delays are out of our control, such as changes to the technology code base or delays in the tech release. We do our best to give you an accurate estimate of the publication date at any given time, and as more chapters are delivered, the more accurate the delivery date will become.

How will I know when new chapters are ready? Chevron down icon Chevron up icon

We'll let you know every time there has been an update to a course that you've bought in Early Access. You'll get an email to let you know there has been a new chapter, or a change to a previous chapter. The new chapters are automatically added to your account, so you can also check back there any time you're ready and download or read them online.

I am a Packt subscriber, do I get Early Access? Chevron down icon Chevron up icon

Yes, all Early Access content is fully available through your subscription. You will need to have a paid for or active trial subscription in order to access all titles.

How is Early Access delivered? Chevron down icon Chevron up icon

Early Access is currently only available as a PDF or through our online reader. As we make changes or add new chapters, the files in your Packt account will be updated so you can download them again or view them online immediately.

How do I buy Early Access content? Chevron down icon Chevron up icon

Early Access is a way of us getting our content to you quicker, but the method of buying the Early Access course is still the same. Just find the course you want to buy, go through the check-out steps, and you’ll get a confirmation email from us with information and a link to the relevant Early Access courses.

What is Early Access? Chevron down icon Chevron up icon

Keeping up to date with the latest technology is difficult; new versions, new frameworks, new techniques. This feature gives you a head-start to our content, as it's being created. With Early Access you'll receive each chapter as it's written, and get regular updates throughout the product's development, as well as the final course as soon as it's ready.We created Early Access as a means of giving you the information you need, as soon as it's available. As we go through the process of developing a course, 99% of it can be ready but we can't publish until that last 1% falls in to place. Early Access helps to unlock the potential of our content early, to help you start your learning when you need it most. You not only get access to every chapter as it's delivered, edited, and updated, but you'll also get the finalized, DRM-free product to download in any format you want when it's published. As a member of Packt, you'll also be eligible for our exclusive offers, including a free course every day, and discounts on new and popular titles.