Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Generative Adversarial Networks Cookbook

You're reading from   Generative Adversarial Networks Cookbook Over 100 recipes to build generative models using Python, TensorFlow, and Keras

Arrow left icon
Product type Paperback
Published in Dec 2018
Publisher Packt
ISBN-13 9781789139907
Length 268 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Josh Kalin Josh Kalin
Author Profile Icon Josh Kalin
Josh Kalin
Arrow right icon
View More author details
Toc

Table of Contents (10) Chapters Close

Preface 1. What Is a Generative Adversarial Network? FREE CHAPTER 2. Data First, Easy Environment, and Data Prep 3. My First GAN in Under 100 Lines 4. Dreaming of New Outdoor Structures Using DCGAN 5. Pix2Pix Image-to-Image Translation 6. Style Transfering Your Image Using CycleGAN 7. Using Simulated Images To Create Photo-Realistic Eyeballs with SimGAN 8. From Image to 3D Models Using GANs 9. Other Books You May Enjoy

What is DCGAN? A simple pseudocode example


The DCGAN architecture simply requires updates for the model of the discriminator and generator. We will also need to update our training step to improve convergence. The MNIST data we used in the first example is the simplest of the examples we can work with. Convergence for GANs, as you will remember, is one of the hardest parts about building such an architecture, but the DCGAN architecture helps ensure that convergence happens reliably. We'll take a detailed look at convergence with the help of pseudocode in the next section.

Getting ready

First, let's break down the DCGAN architecture into the principal, important components: the discriminator and the generator. The next section will focus on how we develop these structures, but first, let's talk about the basic structure of DCGAN, which is made up of the following sections:

  • Numbered steps on the high-level DCGAN
  • Pseudocode generator
  • Pseudocode discriminator
  • Pseudocode trainer

How to do it...

The generator...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image