Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Getting Started with Amazon SageMaker Studio

You're reading from   Getting Started with Amazon SageMaker Studio Learn to build end-to-end machine learning projects in the SageMaker machine learning IDE

Arrow left icon
Product type Paperback
Published in Mar 2022
Publisher Packt
ISBN-13 9781801070157
Length 326 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Michael Hsieh Michael Hsieh
Author Profile Icon Michael Hsieh
Michael Hsieh
Arrow right icon
View More author details
Toc

Table of Contents (16) Chapters Close

Preface 1. Part 1 – Introduction to Machine Learning on Amazon SageMaker Studio
2. Chapter 1: Machine Learning and Its Life Cycle in the Cloud FREE CHAPTER 3. Chapter 2: Introducing Amazon SageMaker Studio 4. Part 2 – End-to-End Machine Learning Life Cycle with SageMaker Studio
5. Chapter 3: Data Preparation with SageMaker Data Wrangler 6. Chapter 4: Building a Feature Repository with SageMaker Feature Store 7. Chapter 5: Building and Training ML Models with SageMaker Studio IDE 8. Chapter 6: Detecting ML Bias and Explaining Models with SageMaker Clarify 9. Chapter 7: Hosting ML Models in the Cloud: Best Practices 10. Chapter 8: Jumpstarting ML with SageMaker JumpStart and Autopilot 11. Part 3 – The Production and Operation of Machine Learning with SageMaker Studio
12. Chapter 9: Training ML Models at Scale in SageMaker Studio 13. Chapter 10: Monitoring ML Models in Production with SageMaker Model Monitor 14. Chapter 11: Operationalize ML Projects with SageMaker Projects, Pipelines, and Model Registry 15. Other Books You May Enjoy

Creating a high-quality model with SageMaker Autopilot

Have you ever wanted to build an ML model without the hassle of data preprocessing, feature engineering, exploring algorithms, and optimizing the hyperparameters? Have you ever thought about how, for some use cases, you just wanted something quick to see if ML is even a possible approach for a certain business use case? Amazon SageMaker Autopilot makes it easy for you to build an ML model for tabular datasets without any code.

Wine quality prediction

To demonstrate SageMaker Autopilot, let's use a wine quality prediction use case. The wine industry has been searching for a technology that can help winemakers and the market to assess the quality of wine faster and with a better standard. Wine quality assessment and certification is a key part of the wine market in terms of production and sales and prevents the illegal adulteration of wines. Wine assessment is performed by expert oenologists based on physicochemical and...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image