Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Graph Data Modeling in Python

You're reading from   Graph Data Modeling in Python A practical guide to curating, analyzing, and modeling data with graphs

Arrow left icon
Product type Paperback
Published in Jun 2023
Publisher Packt
ISBN-13 9781804618035
Length 236 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Authors (2):
Arrow left icon
Gary Hutson Gary Hutson
Author Profile Icon Gary Hutson
Gary Hutson
Matt Jackson Matt Jackson
Author Profile Icon Matt Jackson
Matt Jackson
Arrow right icon
View More author details
Toc

Table of Contents (16) Chapters Close

Preface 1. Part 1: Getting Started with Graph Data Modeling
2. Chapter 1: Introducing Graphs in the Real World FREE CHAPTER 3. Chapter 2: Working with Graph Data Models 4. Part 2: Making the Graph Transition
5. Chapter 3: Data Model Transformation – Relational to Graph Databases 6. Chapter 4: Building a Knowledge Graph 7. Part 3: Storing and Productionizing Graphs
8. Chapter 5: Working with Graph Databases 9. Chapter 6: Pipeline Development 10. Chapter 7: Refactoring and Evolving Schemas 11. Part 4: Graphing Like a Pro
12. Chapter 8: Perfect Projections 13. Chapter 9: Common Errors and Debugging 14. Index 15. Other Books You May Enjoy

Designing a schema and pipeline

Let’s tackle each of the elements we need to set up one at a time. For our backend system, we will need a graph database, so the first stage is setting up a new, blank Neo4j database.

Setting up a new database

As we did in Chapter 5, Working with Graph Databases, let’s start up Neo4j Desktop. Once we have loaded up the desktop, we need to follow these steps to add a new database:

  1. In the main Neo4j window, select Add, and choose Local DBMS.
  2. Choose a name for the new database, for example, Store DB.
  3. Use a generic password too, for example, testpython. We will need to use this password in open code in this example, so make sure not to use a sensitive keyphrase. In a real production system, any authentication to this database required by third-party scripts would likely use a password secret system, to prevent exposure of this password in plain text and code.
  4. Next, click Create, and wait for the new graph database...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image