Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Machine Learning for OpenCV

You're reading from   Machine Learning for OpenCV Intelligent image processing with Python

Arrow left icon
Product type Paperback
Published in Jul 2017
Publisher Packt
ISBN-13 9781783980284
Length 382 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Authors (2):
Arrow left icon
Michael Beyeler Michael Beyeler
Author Profile Icon Michael Beyeler
Michael Beyeler
Michael Beyeler (USD) Michael Beyeler (USD)
Author Profile Icon Michael Beyeler (USD)
Michael Beyeler (USD)
Arrow right icon
View More author details
Toc

Table of Contents (13) Chapters Close

Preface 1. A Taste of Machine Learning FREE CHAPTER 2. Working with Data in OpenCV and Python 3. First Steps in Supervised Learning 4. Representing Data and Engineering Features 5. Using Decision Trees to Make a Medical Diagnosis 6. Detecting Pedestrians with Support Vector Machines 7. Implementing a Spam Filter with Bayesian Learning 8. Discovering Hidden Structures with Unsupervised Learning 9. Using Deep Learning to Classify Handwritten Digits 10. Combining Different Algorithms into an Ensemble 11. Selecting the Right Model with Hyperparameter Tuning 12. Wrapping Up

Getting started with Python

Python has become the common language for many data science and machine learning applications, thanks to its great number of open-source libraries for processes such as data loading, data visualization, statistics, image processing, and natural language processing. One of the main advantages of using Python is the ability to interact directly with the code, using a terminal or other tools such as the Jupyter Notebook, which we'll look at shortly.

If you have mostly been using OpenCV in combination with C++, I would strongly suggest that you switch to Python, at least for the purpose of studying this book. This decision has not been made out of spite! Quite the contrary: I have done my fair share of C/C++ programming--especially in combination with GPU computing via NVIDIA's Compute Unified Device Architecture (CUDA)--and like it a lot. However, I consider Python to be a better choice fundamentally if you want to pick up a new topical skill, because you can do more by typing less. This will help reduce the cognitive load. Rather than getting annoyed by the syntactic subtleties of C++ or wasting hours trying to convert data from one format to another, Python will help you concentrate on the topic at hand: becoming an expert in machine learning.

You have been reading a chapter from
Machine Learning for OpenCV
Published in: Jul 2017
Publisher: Packt
ISBN-13: 9781783980284
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image