Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Practical Discrete Mathematics

You're reading from   Practical Discrete Mathematics Discover math principles that fuel algorithms for computer science and machine learning with Python

Arrow left icon
Product type Paperback
Published in Feb 2021
Publisher Packt
ISBN-13 9781838983147
Length 330 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Authors (2):
Arrow left icon
Ryan T. White Ryan T. White
Author Profile Icon Ryan T. White
Ryan T. White
Archana Tikayat Ray Archana Tikayat Ray
Author Profile Icon Archana Tikayat Ray
Archana Tikayat Ray
Arrow right icon
View More author details
Toc

Table of Contents (17) Chapters Close

Preface 1. Part I – Basic Concepts of Discrete Math
2. Chapter 1: Key Concepts, Notation, Set Theory, Relations, and Functions FREE CHAPTER 3. Chapter 2: Formal Logic and Constructing Mathematical Proofs 4. Chapter 3: Computing with Base-n Numbers 5. Chapter 4: Combinatorics Using SciPy 6. Chapter 5: Elements of Discrete Probability 7. Part II – Implementing Discrete Mathematics in Data and Computer Science
8. Chapter 6: Computational Algorithms in Linear Algebra 9. Chapter 7: Computational Requirements for Algorithms 10. Chapter 8: Storage and Feature Extraction of Graphs, Trees, and Networks 11. Chapter 9: Searching Data Structures and Finding Shortest Paths 12. Part III – Real-World Applications of Discrete Mathematics
13. Chapter 10: Regression Analysis with NumPy and Scikit-Learn 14. Chapter 11: Web Searches with PageRank 15. Chapter 12: Principal Component Analysis with Scikit-Learn 16. Other Books You May Enjoy

Summary

In this chapter, we began by introducing the ideas of graphs, directed graphs, networks, and directed networks along with some common language used to describe them. Next, we introduced a few ways in which these structures are used for modeling practical problems, many to be investigated more deeply in the forthcoming chapters.

After this, we moved on to consider ways in which graphs and networks can be stored in computer memory with Python. Especially popular are adjacency matrices and adjacency lists for graphs and weight matrices for networks. In the last section, we showed many features of graphs from adjacency matrices, such as degrees of vertices, the number of paths between pairs of vertices, and the length of the minimum-edge paths between the vertices.

Altogether, this chapter has defined graphs, trees, networks, and the directed types of these structures, established some common vocabulary on these topics, familiarized you with some practical applications of...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image