In this chapter, we introduced supervised learning, got our environment put together, and learned about hill climbing and model evaluation. At this point, you should understand the abstract conceptual underpinnings of what makes a machine learn. It's all about optimizing a number of loss functions. In the next chapter, we'll jump into parametric models and even code some popular algorithms from scratch.
Germany
Slovakia
Canada
Brazil
Singapore
Hungary
Philippines
Mexico
Thailand
Ukraine
Luxembourg
Estonia
Lithuania
Norway
Chile
United States
Great Britain
India
Spain
South Korea
Ecuador
Colombia
Taiwan
Switzerland
Indonesia
Cyprus
Denmark
Finland
Poland
Malta
Czechia
New Zealand
Austria
Turkey
France
Sweden
Italy
Egypt
Belgium
Portugal
Slovenia
Ireland
Romania
Greece
Argentina
Malaysia
South Africa
Netherlands
Bulgaria
Latvia
Australia
Japan
Russia