Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
AWS Certified Machine Learning - Specialty (MLS-C01) Certification Guide

You're reading from   AWS Certified Machine Learning - Specialty (MLS-C01) Certification Guide The ultimate guide to passing the MLS-C01 exam on your first attempt

Arrow left icon
Product type Paperback
Published in Feb 2024
Publisher Packt
ISBN-13 9781835082201
Length 342 pages
Edition 2nd Edition
Languages
Tools
Arrow right icon
Authors (2):
Arrow left icon
Somanath Nanda Somanath Nanda
Author Profile Icon Somanath Nanda
Somanath Nanda
Weslley Moura Weslley Moura
Author Profile Icon Weslley Moura
Weslley Moura
Arrow right icon
View More author details
Toc

Table of Contents (13) Chapters Close

Preface 1. Chapter 1: Machine Learning Fundamentals FREE CHAPTER 2. Chapter 2: AWS Services for Data Storage 3. Chapter 3: AWS Services for Data Migration and Processing 4. Chapter 4: Data Preparation and Transformation 5. Chapter 5: Data Understanding and Visualization 6. Chapter 6: Applying Machine Learning Algorithms 7. Chapter 7: Evaluating and Optimizing Models 8. Chapter 8: AWS Application Services for AI/ML 9. Chapter 9: Amazon SageMaker Modeling 10. Chapter 10: Model Deployment 11. Chapter 11: Accessing the Online Practice Resources 12. Other Books You May Enjoy

Modeling expectations

So far, you have learned about model building, validation, and management. You can now complete the foundations of ML by learning about a couple of other expectations while modeling.

The first one is parsimony. Parsimony describes models that offer the simplest explanation and fit the best results when compared with other models. Here’s an example: while creating a linear regression model, you realize that adding 10 more features will improve your model’s performance by 0.001%. In this scenario, you should consider whether this performance improvement is worth the cost of parsimony (since your model will become more complex). Sometimes it is worth it, but most of the time it is not. You need to be skeptical and think according to your business case.

Parsimony directly supports interpretability. The simpler your model is, the easier it is to explain it. However, there is a battle between interpretability and predictivity: if you focus on predictive power, you are likely to lose some interpretability. Again, you must select what is the best situation for your use case.

You have been reading a chapter from
AWS Certified Machine Learning - Specialty (MLS-C01) Certification Guide - Second Edition
Published in: Feb 2024
Publisher: Packt
ISBN-13: 9781835082201
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image