Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Coding with ChatGPT and Other LLMs

You're reading from   Coding with ChatGPT and Other LLMs Navigate LLMs for effective coding, debugging, and AI-driven development

Arrow left icon
Product type Paperback
Published in Nov 2024
Publisher Packt
ISBN-13 9781805125051
Length 304 pages
Edition 1st Edition
Languages
Concepts
Arrow right icon
Authors (2):
Arrow left icon
Dr. Vincent Austin Hall Dr. Vincent Austin Hall
Author Profile Icon Dr. Vincent Austin Hall
Dr. Vincent Austin Hall
Chigbo Uzokwelu Chigbo Uzokwelu
Author Profile Icon Chigbo Uzokwelu
Chigbo Uzokwelu
Arrow right icon
View More author details
Toc

Table of Contents (19) Chapters Close

Preface 1. Part 1: Introduction to LLMs and Their Applications FREE CHAPTER
2. Chapter 1: What is ChatGPT and What are LLMs? 3. Chapter 2: Unleashing the Power of LLMs for Coding: A Paradigm Shift 4. Chapter 3: Code Refactoring, Debugging, and Optimization: A Practical Guide 5. Part 2: Be Wary of the Dark Side of LLM-Powered Coding
6. Chapter 4: Demystifying Generated Code for Readability 7. Chapter 5: Addressing Bias and Ethical Concerns in LLM-Generated Code 8. Chapter 6: Navigating the Legal Landscape of LLM-Generated Code 9. Chapter 7: Security Considerations and Measures 10. Part 3: Explainability, Shareability, and the Future of LLM-Powered Coding
11. Chapter 8: Limitations of Coding with LLMs 12. Chapter 9: Cultivating Collaboration in LLM-Enhanced Coding 13. Chapter 10: Expanding the LLM Toolkit for Coders: Beyond LLMs 14. Part 4: Maximizing Your Potential with LLMs: Beyond the Basics
15. Chapter 11: Helping Others and Maximizing Your Career with LLMs 16. Chapter 12: The Future of LLMs in Software Development 17. Index 18. Other Books You May Enjoy

Implementing security measures for LLM-powered coding

As we integrate LLMs into our development workflows, it’s crucial to implement robust security measures. These measures will help ensure that our LLM-assisted code is ready for real-world deployment. Let’s explore key areas of focus and practical steps to enhance security in LLM-powered coding environments.

Here are seven measures that should be taken to get more secure code.

Input sanitization and validation

When using LLMs for code generation or completion, it’s important to sanitize and validate all inputs, both those provided to the LLM and those generated by it.

Validation is where the data is checked to make sure it’s correct/accurate before processing or using it. Sanitization is where the data is cleaned, where parts that could be dangerous are removed or changed enough that they’re not dangerous [NinjaOne, Informatica].

Before passing any input to an LLM, validate it against...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image