Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Machine Learning for Finance

You're reading from   Machine Learning for Finance Principles and practice for financial insiders

Arrow left icon
Product type Paperback
Published in May 2019
Publisher Packt
ISBN-13 9781789136364
Length 456 pages
Edition 1st Edition
Languages
Arrow right icon
Authors (2):
Arrow left icon
Jannes Klaas Jannes Klaas
Author Profile Icon Jannes Klaas
Jannes Klaas
James Le James Le
Author Profile Icon James Le
James Le
Arrow right icon
View More author details
Toc

Table of Contents (15) Chapters Close

Machine Learning for Finance
Contributors
Preface
Other Books You May Enjoy
1. Neural Networks and Gradient-Based Optimization 2. Applying Machine Learning to Structured Data FREE CHAPTER 3. Utilizing Computer Vision 4. Understanding Time Series 5. Parsing Textual Data with Natural Language Processing 6. Using Generative Models 7. Reinforcement Learning for Financial Markets 8. Privacy, Debugging, and Launching Your Products 9. Fighting Bias 10. Bayesian Inference and Probabilistic Programming Index

Regular expressions


Regular expressions, or regexes, are a powerful form of rule-based matching. Invented back in the 1950s, they were, for a very long time, the most useful way to find things in text and proponents argue that they still are.

No chapter on NLP would be complete without mentioning regexes. With that being said, this section is by no means a complete regex tutorial. It's intended to introduce the general idea and show how regexes can be used in Python, pandas, and spaCy.

A very simple regex pattern could be "a." This would only find instances of the lower-case letter a followed by a dot. However, regexes also allow you to add ranges of patterns; for example, "[a-z]." would find any lower-case letter followed by a dot, and "xy." would find only the letters "x" or "y" followed by a dot.

Regex patterns are case sensitive, so "A-Z" would only capture upper-case letters. This is useful if we are searching for expressions in which the spelling is frequently different; for example,...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image