Chapter 1, Programming Environments, GPU Computing, Cloud Solutions, and Deep Learning Frameworks, includes information and recipes related to environments and GPU computing. It is a must-read for readers who have issues in setting up their environment on different platforms.
Chapter 2, Feed-Forward Neural Networks, provides a collection of recipes related to feed-forward neural networks and forms the basis for the other chapters. The focus of this chapter is to provide solutions to common implementation problems for different network topologies.
Chapter 3, Convolutional Neural Networks, focuses on convolutional neural networks and their application in computer vision. It provides recipes on techniques and optimizations used in CNNs.
Chapter 4, Recurrent Neural Networks, provides a collection of recipes related to recurrent neural networks. These include LSTM networks and GRUs. The focus of this chapter is to provide solutions to common implementation problems for recurrent neural networks.
Chapter 5, Reinforcement Learning, covers recipes for reinforcement learning with neural networks. The recipes in this chapter introduce the concepts of deep reinforcement learning in a single-agent world.
Chapter 6, Generative Adversarial Networks, provides a collection of recipes related to unsupervised learning problems. These include generative adversarial networks for image generation and super resolution.
Chapter 7, Computer Vision, contains recipes related to processing data encoded as images, including video frames. Classic techniques of processing image data using Python will be provided, along with best-of-class solutions for detection, classification, and segmentation.
Chapter 8, Natural Language Processing, contains recipes related to textual data processing. This includes recipes related to textual feature representation and processing, including word embeddings and text data storage.
Chapter 9, Speech Recognition and Video Analysis, covers recipes related to stream data processing. This includes audio, video, and frame sequences
Chapter 10, Time Series and Structured Data, provides recipes related to number crunching. This includes sequences and time series.
Chapter 11, Game Playing Agents and Robotics, focuses on state-of-the-art deep learning research applications. This includes recipes related to game-playing agents in a multi-agent environment (simulations) and autonomous vehicles.
Chapter 12, Hyperparameter Selection, Tuning, and Neural Network Learning, illustrates recipes on the many aspects involved in the learning process of a neural network. The overall objective of the recipes is to provide very neat and specific tricks to boost network performance.
Chapter 13, Network Internals, covers the internals of a neural network. This includes tensor decomposition, weight initialization, topology storage, bottleneck features, and corresponding embedding.
Chapter 14, Pretrained Models, covers popular deep learning models such as VGG-16 and Inception V4.