Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Python Machine Learning By Example

You're reading from   Python Machine Learning By Example The easiest way to get into machine learning

Arrow left icon
Product type Paperback
Published in May 2017
Publisher Packt
ISBN-13 9781783553112
Length 254 pages
Edition 1st Edition
Languages
Arrow right icon
Authors (2):
Arrow left icon
Yuxi (Hayden) Liu Yuxi (Hayden) Liu
Author Profile Icon Yuxi (Hayden) Liu
Yuxi (Hayden) Liu
Ivan Idris Ivan Idris
Author Profile Icon Ivan Idris
Ivan Idris
Arrow right icon
View More author details
Toc

Table of Contents (9) Chapters Close

Preface 1. Getting Started with Python and Machine Learning 2. Exploring the 20 Newsgroups Dataset with Text Analysis Algorithms FREE CHAPTER 3. Spam Email Detection with Naive Bayes 4. News Topic Classification with Support Vector Machine 5. Click-Through Prediction with Tree-Based Algorithms 6. Click-Through Prediction with Logistic Regression 7. Stock Price Prediction with Regression Algorithms 8. Best Practices

Summary

In this chapter, we first expanded our knowledge of text feature exaction by introducing an advanced technique termed frequency-inverse document frequency. We then continued our journey of classifying news data with the support vector machine classifier, where we acquired the mechanics of SVM, kernel techniques and implementations of SVM, and other important concepts of machine learning classification, including multiclass classification strategies and grid search, as well as useful tips for using SVM (for example, choosing between kernels and tuning parameters). We finally adopted what we have learned in two practical cases, news topic classification and fetal state classification.

We have learned and applied two classification algorithms so far, naive Bayes and SVM. naive Bayes is a simple algorithm. For a dataset with independent features, naive Bayes will usually perform well. SVM is versatile to adapt...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image