Learn how to leverage LangChain to work around LLMs’ inherent weaknesses
Delve into LLMs with LangChain and explore their fundamentals, ethical dimensions, and application challenges
Get better at using ChatGPT and GPT models, from heuristics and training to scalable deployment, empowering you to transform ideas into reality
Description
ChatGPT and the GPT models by OpenAI have brought about a revolution not only in how we write and research but also in how we can process information. This book discusses the functioning, capabilities, and limitations of LLMs underlying chat systems, including ChatGPT and Gemini. It demonstrates, in a series of practical examples, how to use the LangChain framework to build production-ready and responsive LLM applications for tasks ranging from customer support to software development assistance and data analysis – illustrating the expansive utility of LLMs in real-world applications.
Unlock the full potential of LLMs within your projects as you navigate through guidance on fine-tuning, prompt engineering, and best practices for deployment and monitoring in production environments. Whether you're building creative writing tools, developing sophisticated chatbots, or crafting cutting-edge software development aids, this book will be your roadmap to mastering the transformative power of generative AI with confidence and creativity.
Who is this book for?
The book is for developers, researchers, and anyone interested in learning more about LangChain. Whether you are a beginner or an experienced developer, this book will serve as a valuable resource if you want to get the most out of LLMs using LangChain.
Basic knowledge of Python is a prerequisite, while prior exposure to machine learning will help you follow along more easily.
What you will learn
Create LLM apps with LangChain, like question-answering systems and chatbots
Understand transformer models and attention mechanisms
Automate data analysis and visualization using pandas and Python
Grasp prompt engineering to improve performance
Fine-tune LLMs and get to know the tools to unleash their power
Deploy LLMs as a service with LangChain and apply evaluation strategies
Privately interact with documents using open-source LLMs to prevent data leaks
This book is as up-to-date as it can be, with lots of helpful code examples, and covering all aspects of LLM the development pipeline. It's my work companion, way more useful than official LangChain documentation. A must for everyone involved in LLMOps
Subscriber review
Kam F SiuJan 30, 2024
5
Feefo Verified review
Andrew McVeighMay 01, 2024
5
i'm only 100 pages into this book, but boy is it well phrased and extremely clear. i write apps around LLMs, including RAG architectures. perhaps it's just the current state of my learning, but i've found this book to be extremely helpful and very logically organized. I'll revisit this review once i'm through the entire book, but so far 10/10. it's easily the best and most self-contained book i have on the subject.
Amazon Verified review
F. P.Dec 22, 2023
5
During my learning journey into large language model (LLM) development, I encountered several challenges:- The difficulty of providing precise instructions within specific contexts, which I found to be the most challenging and crucial aspect.- Switching between different LLM models with minimal programming effort.- Selectively saving chat history in memory.- Handling data efficiently, including managing input data of various modalities and making output data accessible.In overcoming these obstacles, I came across LangChain, a robust toolkit designed for LLM application development. The book "Generative AI with LangChain" by Ben Auffarth provides a comprehensive overview, covering the basics of LLM, LangChain, and its key components (chains, agents, memory, tools). The book also explores sample applications such as chatbots, customization of LLM models (conditioning, fine-tuning), and the deployment of LLM apps into production. Unlike theoretical research materials, this book serves as a practical, one-stop resource for understanding the current landscape of LLM applications.Some of the interesting points:- LangChain helps standardize prompts by providing prompt templates (LangChain Expression Language).- LangChain provides extensive integrations to other model APIs including Fake LLM, OpenAI, Hugging Face, GCP, Jina AI, Replicate, etc.- LangChain has "memory" which allows the model to be context-aware.- LangChain supports advanced data facilities such as map-reduce approach and output parser.This book has significantly saved me time, providing consolidated information without the need for extensive online searches or inquiries to ChatGPT. For those unsure about its content, I recommend checking out the free sample on Amazon – it's undoubtedly worth every penny.
Amazon Verified review
hawkinflightJan 05, 2024
5
I have not used LangChain before, and I am looking at this book to learn how to create an LLM app. I am really looking forward to trying it out for all three types of apps covered in the book - assistants/chatbot, code generation, and data science. The book is clear and straight to the point, so I expect to be able to try these out fairly quickly. I have gotten through the "setting up the dependencies" section. I cloned the book's github repo, and I tried three methods for variety's sake to create a python environment: pip, conda, and Docker, all on Windows, and I believe I have them all set up. I hit some bumps, but I was able to follow the onscreen error messages and get past them. For pip, I needed to install MSFT Build Tools to get C++. For the conda case, I had to modify the yaml file for two of the packages - ncurses and readline, which have different names for Windows. In Chapter 2 there is a comparison of LangChain with other frameworks, from which you get a feel that choosing LangChain at this moment is the best choice. I am happy to have found this book, and I can't wait to proceed w/the next steps. It's a lot of fun to be able to interact w/LLMs.
Ben Auffarth is a full-stack data scientist with more than 15 years of work experience. With a background and Ph.D. in computational and cognitive neuroscience, he has designed and conducted wet lab experiments on cell cultures, analyzed experiments with terabytes of data, run brain models on IBM supercomputers with up to 64k cores, built production systems processing hundreds and thousands of transactions per day, and trained language models on a large corpus of text documents. He co-founded and is the former president of Data Science Speakers, London.
A subscription provides you with full access to view all Packt and licnesed content online, this includes exclusive access to Early Access titles. Depending on the tier chosen you can also earn credits and discounts to use for owning content
How can I cancel my subscription?
To cancel your subscription with us simply go to the account page - found in the top right of the page or at https://subscription.packtpub.com/my-account/subscription - From here you will see the ‘cancel subscription’ button in the grey box with your subscription information in.
What are credits?
Credits can be earned from reading 40 section of any title within the payment cycle - a month starting from the day of subscription payment. You also earn a Credit every month if you subscribe to our annual or 18 month plans. Credits can be used to buy books DRM free, the same way that you would pay for a book. Your credits can be found in the subscription homepage - subscription.packtpub.com - clicking on ‘the my’ library dropdown and selecting ‘credits’.
What happens if an Early Access Course is cancelled?
Projects are rarely cancelled, but sometimes it's unavoidable. If an Early Access course is cancelled or excessively delayed, you can exchange your purchase for another course. For further details, please contact us here.
Where can I send feedback about an Early Access title?
If you have any feedback about the product you're reading, or Early Access in general, then please fill out a contact form here and we'll make sure the feedback gets to the right team.
Can I download the code files for Early Access titles?
We try to ensure that all books in Early Access have code available to use, download, and fork on GitHub. This helps us be more agile in the development of the book, and helps keep the often changing code base of new versions and new technologies as up to date as possible. Unfortunately, however, there will be rare cases when it is not possible for us to have downloadable code samples available until publication.
When we publish the book, the code files will also be available to download from the Packt website.
How accurate is the publication date?
The publication date is as accurate as we can be at any point in the project. Unfortunately, delays can happen. Often those delays are out of our control, such as changes to the technology code base or delays in the tech release. We do our best to give you an accurate estimate of the publication date at any given time, and as more chapters are delivered, the more accurate the delivery date will become.
How will I know when new chapters are ready?
We'll let you know every time there has been an update to a course that you've bought in Early Access. You'll get an email to let you know there has been a new chapter, or a change to a previous chapter. The new chapters are automatically added to your account, so you can also check back there any time you're ready and download or read them online.
I am a Packt subscriber, do I get Early Access?
Yes, all Early Access content is fully available through your subscription. You will need to have a paid for or active trial subscription in order to access all titles.
How is Early Access delivered?
Early Access is currently only available as a PDF or through our online reader. As we make changes or add new chapters, the files in your Packt account will be updated so you can download them again or view them online immediately.
How do I buy Early Access content?
Early Access is a way of us getting our content to you quicker, but the method of buying the Early Access course is still the same. Just find the course you want to buy, go through the check-out steps, and you’ll get a confirmation email from us with information and a link to the relevant Early Access courses.
What is Early Access?
Keeping up to date with the latest technology is difficult; new versions, new frameworks, new techniques. This feature gives you a head-start to our content, as it's being created. With Early Access you'll receive each chapter as it's written, and get regular updates throughout the product's development, as well as the final course as soon as it's ready.We created Early Access as a means of giving you the information you need, as soon as it's available. As we go through the process of developing a course, 99% of it can be ready but we can't publish until that last 1% falls in to place. Early Access helps to unlock the potential of our content early, to help you start your learning when you need it most. You not only get access to every chapter as it's delivered, edited, and updated, but you'll also get the finalized, DRM-free product to download in any format you want when it's published. As a member of Packt, you'll also be eligible for our exclusive offers, including a free course every day, and discounts on new and popular titles.