Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Modern Computer Architecture and Organization

You're reading from   Modern Computer Architecture and Organization Learn x86, ARM, and RISC-V architectures and the design of smartphones, PCs, and cloud servers

Arrow left icon
Product type Paperback
Published in Apr 2020
Publisher Packt
ISBN-13 9781838984397
Length 560 pages
Edition 1st Edition
Tools
Arrow right icon
Author (1):
Arrow left icon
Jim Ledin Jim Ledin
Author Profile Icon Jim Ledin
Jim Ledin
Arrow right icon
View More author details
Toc

Table of Contents (20) Chapters Close

Preface 1. Section 1: Fundamentals of Computer Architecture
2. Chapter 1: Introducing Computer Architecture FREE CHAPTER 3. Chapter 2: Digital Logic 4. Chapter 3: Processor Elements 5. Chapter 4: Computer System Components 6. Chapter 5: Hardware-Software Interface 7. Chapter 6: Specialized Computing Domains 8. Section 2: Processor Architectures and Instruction Sets
9. Chapter 7: Processor and Memory Architectures 10. Chapter 8: Performance-Enhancing Techniques 11. Chapter 9: Specialized Processor Extensions 12. Chapter 10: Modern Processor Architectures and Instruction Sets 13. Chapter 11: The RISC-V Architecture and Instruction Set 14. Section 3: Applications of Computer Architecture
15. Chapter 12: Processor Virtualization 16. Chapter 13: Domain-Specific Computer Architectures 17. Chapter 14: Future Directions in Computer Architectures 18. Answers to Exercises 19. Other Books You May Enjoy

Summary

Having completed this chapter, you should have a good understanding of the top-level architectures and features of the x86, x64, 32-bit ARM, and 64-bit ARM registers, instruction sets, and assembly languages.

The x86 and x64 architectures represent a mostly CISC approach to processor design, with variable-length instructions that can take many cycles to execute, a lengthy pipeline, and (in x86) a limited number of processor registers.

The ARM architectures, on the other hand, are RISC processors with mostly single-cycle instruction execution, a large register set, and (somewhat) fixed-length instructions. Early versions of ARM had pipelines as short as three stages, though later versions have considerably more stages.

Is one of these architectures better than the other, in a general sense? It may be that each is better in some ways, and system designers must make their selection of processor architecture based on the specific needs of the system under development....

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image