Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
PyTorch 1.x Reinforcement Learning Cookbook

You're reading from   PyTorch 1.x Reinforcement Learning Cookbook Over 60 recipes to design, develop, and deploy self-learning AI models using Python

Arrow left icon
Product type Paperback
Published in Oct 2019
Publisher Packt
ISBN-13 9781838551964
Length 340 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Yuxi (Hayden) Liu Yuxi (Hayden) Liu
Author Profile Icon Yuxi (Hayden) Liu
Yuxi (Hayden) Liu
Arrow right icon
View More author details
Toc

Table of Contents (11) Chapters Close

Preface 1. Getting Started with Reinforcement Learning and PyTorch FREE CHAPTER 2. Markov Decision Processes and Dynamic Programming 3. Monte Carlo Methods for Making Numerical Estimations 4. Temporal Difference and Q-Learning 5. Solving Multi-armed Bandit Problems 6. Scaling Up Learning with Function Approximation 7. Deep Q-Networks in Action 8. Implementing Policy Gradients and Policy Optimization 9. Capstone Project – Playing Flappy Bird with DQN 10. Other Books You May Enjoy

Installing OpenAI Gym

After setting up the working environment, we can now install OpenAI Gym. You can't work on reinforcement learning without using OpenAI Gym, which gives you a variety of environments in which to develop your learning algorithms.

OpenAI (https://openai.com/) is a non-profit research company that is focused on building safe artificial general intelligence (AGI) and ensuring that it benefits humans. OpenAI Gym is a powerful and open source toolkit for developing and comparing reinforcement learning algorithms. It provides an interface to varieties of reinforcement learning simulations and tasks, from walking to moon landing, from car racing to playing Atari games. See https://gym.openai.com/envs/ for the full list of environments.We can write agents to interact with OpenAI Gym environments using any numerical computation library, such as PyTorch, TensorFlow, or Keras.

How to do it...

There are two ways to install Gym. The first one is to use pip, as follows:

pip install gym

For conda users, remember to install pip first in conda using the following command before installing Gym using pip:

conda install pip

This is because Gym is not officially available in conda as of early 2019.

Another approach is to build from source:

  1. First, clone the package directly from its Git repository:
git clone https://github.com/openai/gym
  1. Go to the downloaded folder and install Gym from there:
cd gym
pip install -e .

And now you are good to go. Feel free to play around with gym.

  1. You can also check the available gym environment by typing the following lines of code:
>>> from gym import envs
>>> print(envs.registry.all())
dict_values([EnvSpec(Copy-v0), EnvSpec(RepeatCopy-v0), EnvSpec(ReversedAddition-v0), EnvSpec(ReversedAddition3-v0), EnvSpec(DuplicatedInput-v0), EnvSpec(Reverse-v0), EnvSpec(CartPole-v0), EnvSpec(CartPole-v1), EnvSpec(MountainCar-v0), EnvSpec(MountainCarContinuous-v0), EnvSpec(Pendulum-v0), EnvSpec(Acrobot-v1), EnvSpec(LunarLander-v2), EnvSpec(LunarLanderContinuous-v2), EnvSpec(BipedalWalker-v2), EnvSpec(BipedalWalkerHardcore-v2), EnvSpec(CarRacing-v0), EnvSpec(Blackjack-v0)
...
...

This will give you a long list of environments if you installed Gym properly. We will play around with some of them in the next recipe, Simulating Atari environments.

How it works...

Compared to the simple pip approach for installing Gym, the second approach provides more flexibility if you want to add new environments and modify Gym itself.

There's more...

You may wonder why we need to test reinforcement learning algorithms on Gym's environments since the actual environments we work in can be a lot different. You will recall that reinforcement learning doesn't make many assumptions about the environment, but it gets to know more about the environment by interacting with it. Also, when comparing the performance of different algorithms, we need to apply them to standardized environments. Gym is a perfect benchmark, covering many versatile and easy-to-use environments. This is similar to the datasets that we often use as benchmarks in supervised and unsupervised learning, such as MNIST, Imagenet, MovieLens, and Thomson Reuters News.

See also

You have been reading a chapter from
PyTorch 1.x Reinforcement Learning Cookbook
Published in: Oct 2019
Publisher: Packt
ISBN-13: 9781838551964
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image