Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
3D Deep Learning with Python

You're reading from   3D Deep Learning with Python Design and develop your computer vision model with 3D data using PyTorch3D and more

Arrow left icon
Product type Paperback
Published in Oct 2022
Publisher Packt
ISBN-13 9781803247823
Length 236 pages
Edition 1st Edition
Languages
Arrow right icon
Authors (4):
Arrow left icon
Xudong Ma Xudong Ma
Author Profile Icon Xudong Ma
Xudong Ma
Vishakh Hegde Vishakh Hegde
Author Profile Icon Vishakh Hegde
Vishakh Hegde
Lilit Yolyan Lilit Yolyan
Author Profile Icon Lilit Yolyan
Lilit Yolyan
David Farrugia David Farrugia
Author Profile Icon David Farrugia
David Farrugia
Arrow right icon
View More author details
Toc

Table of Contents (16) Chapters Close

Preface 1. PART 1: 3D Data Processing Basics
2. Chapter 1: Introducing 3D Data Processing FREE CHAPTER 3. Chapter 2: Introducing 3D Computer Vision and Geometry 4. PART 2: 3D Deep Learning Using PyTorch3D
5. Chapter 3: Fitting Deformable Mesh Models to Raw Point Clouds 6. Chapter 4: Learning Object Pose Detection and Tracking by Differentiable Rendering 7. Chapter 5: Understanding Differentiable Volumetric Rendering 8. Chapter 6: Exploring Neural Radiance Fields (NeRF) 9. PART 3: State-of-the-art 3D Deep Learning Using PyTorch3D
10. Chapter 7: Exploring Controllable Neural Feature Fields 11. Chapter 8: Modeling the Human Body in 3D 12. Chapter 9: Performing End-to-End View Synthesis with SynSin 13. Chapter 10: Mesh R-CNN 14. Index 15. Other Books You May Enjoy

Summary

At the beginning of the chapter, we looked at the SynSin model structure, and we gained a deep understanding of the end-to-end process of the model. As mentioned earlier, one interesting approach during the model creation was a differentiable renderer as a part of the training. Also, we saw that the model helps to solve the problem of not having a huge, annotated dataset, or if you don’t have multiple images for test time. That is why this is a state-of-the-art model, which would be easier to use in real-life scenarios. We looked at the pros and cons of the model. Also, we looked at how to initialize the model, train, test, and use new images for inference.

In the next chapter, we will look at the Mesh R-CNN model, which combines two different tasks (object detection and 3D model construction) into one model. We will explore the architecture of the model and test the model performance on a random image.

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image