Another nifty gradient-based method is the gradient weighted class activation map (Grad-CAM). This is useful specifically if you have input images with entities belonging to several output classes and you want to visualize which areas in the input picture your network associates most with a specific output class. This technique leverages the class-specific gradient information flowing into the final convolutional layer of a CNN to produce a coarse localization map of the important regions in the image. In other words, we feed our network an input image and take the output activation map of a convolution layer by weighing every channel of the output (that is, the activation maps) by the gradient of the output class with respect to the channel. This allows us to better utilize the spatial information corresponding to what our network pays...
Germany
Slovakia
Canada
Brazil
Singapore
Hungary
Philippines
Mexico
Thailand
Ukraine
Luxembourg
Estonia
Lithuania
Norway
Chile
United States
Great Britain
India
Spain
South Korea
Ecuador
Colombia
Taiwan
Switzerland
Indonesia
Cyprus
Denmark
Finland
Poland
Malta
Czechia
New Zealand
Austria
Turkey
France
Sweden
Italy
Egypt
Belgium
Portugal
Slovenia
Ireland
Romania
Greece
Argentina
Malaysia
South Africa
Netherlands
Bulgaria
Latvia
Australia
Japan
Russia