Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Hands-On Q-Learning with Python

You're reading from   Hands-On Q-Learning with Python Practical Q-learning with OpenAI Gym, Keras, and TensorFlow

Arrow left icon
Product type Paperback
Published in Apr 2019
Publisher Packt
ISBN-13 9781789345803
Length 212 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Nazia Habib Nazia Habib
Author Profile Icon Nazia Habib
Nazia Habib
Arrow right icon
View More author details
Toc

Table of Contents (14) Chapters Close

Preface 1. Section 1: Q-Learning: A Roadmap FREE CHAPTER
2. Brushing Up on Reinforcement Learning Concepts 3. Getting Started with the Q-Learning Algorithm 4. Setting Up Your First Environment with OpenAI Gym 5. Teaching a Smartcab to Drive Using Q-Learning 6. Section 2: Building and Optimizing Q-Learning Agents
7. Building Q-Networks with TensorFlow 8. Digging Deeper into Deep Q-Networks with Keras and TensorFlow 9. Section 3: Advanced Q-Learning Challenges with Keras, TensorFlow, and OpenAI Gym
10. Decoupling Exploration and Exploitation in Multi-Armed Bandits 11. Further Q-Learning Research and Future Projects 12. Assessments 13. Other Books You May Enjoy

A brief overview of neural networks

Broadly speaking, a neural network is a type of machine learning framework that is built for pattern-matching. Neural networks are often used to classify input data, such as images or text, based on the extensional definitions of the type of object they are identifying. A classifier network, for example, might be given images as input and labels as output, and then use this to determine an internal function that will map the Inputs to the Outputs:

The first black box operation in the preceding diagram indicates that the network is being trained and is updating its approximation of the input and output function based on incoming data. The second box represents the testing process, where the network uses its internal function to make predictions on new incoming data.

Think of the way a machine learning algorithm, such as a decision tree classifier...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image