Multi-layer perceptrons (MLP) are the most basic forms of neural networks. An MLP consists of three components: an input layer, a bunch of hidden layers, and an output layer. An input layer represents a vector of regressors or input features, for example, observations from preceding p points in time [xt-1,xt-2, ... ,xt-p]. The input features are fed to a hidden layer that has n neurons, each of which applies a linear transformation and a nonlinear activation to the input features. The output of a neuron is gi = h(wix + bi), where wi and bi are the weights and bias of the linear transformation and h is a nonlinear activation function. The nonlinear activation function enables the neural network to model complex non-linearities of the underlying relations between the regressors and the target variable. Popularly, h is the sigmoid function, , that squashes...
Germany
Slovakia
Canada
Brazil
Singapore
Hungary
Philippines
Mexico
Thailand
Ukraine
Luxembourg
Estonia
Lithuania
Norway
Chile
United States
Great Britain
India
Spain
South Korea
Ecuador
Colombia
Taiwan
Switzerland
Indonesia
Cyprus
Denmark
Finland
Poland
Malta
Czechia
New Zealand
Austria
Turkey
France
Sweden
Italy
Egypt
Belgium
Portugal
Slovenia
Ireland
Romania
Greece
Argentina
Malaysia
South Africa
Netherlands
Bulgaria
Latvia
Australia
Japan
Russia