Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Advanced Natural Language Processing with TensorFlow 2

You're reading from   Advanced Natural Language Processing with TensorFlow 2 Build effective real-world NLP applications using NER, RNNs, seq2seq models, Transformers, and more

Arrow left icon
Product type Paperback
Published in Feb 2021
Publisher Packt
ISBN-13 9781800200937
Length 380 pages
Edition 1st Edition
Languages
Arrow right icon
Authors (2):
Arrow left icon
Tony Mullen Tony Mullen
Author Profile Icon Tony Mullen
Tony Mullen
Ashish Bansal Ashish Bansal
Author Profile Icon Ashish Bansal
Ashish Bansal
Arrow right icon
View More author details
Toc

Table of Contents (13) Chapters Close

Preface 1. Essentials of NLP 2. Understanding Sentiment in Natural Language with BiLSTMs FREE CHAPTER 3. Named Entity Recognition (NER) with BiLSTMs, CRFs, and Viterbi Decoding 4. Transfer Learning with BERT 5. Generating Text with RNNs and GPT-2 6. Text Summarization with Seq2seq Attention and Transformer Networks 7. Multi-Modal Networks and Image Captioning with ResNets and Transformer Networks 8. Weakly Supervised Learning for Classification with Snorkel 9. Building Conversational AI Applications with Deep Learning 10. Installation and Setup Instructions for Code 11. Other Books You May Enjoy
12. Index

BERT-based transfer learning

Embeddings like GloVe are context-free embeddings. Lack of context can be limiting in NLP contexts. As discussed before, the word bank can mean different things depending on the context. Bi-directional Encoder Representations from Transformers, or BERT, came out of Google Research in May 2019 and demonstrated significant improvements on baselines. The BERT model builds on several innovations that came before it. The BERT paper also introduces several innovations of ERT works.

Two foundational advancements that enabled BERT are the encoder-decoder network architecture and the Attention mechanism. The Attention mechanism further evolved to produce the Transformer architecture. The Transformer architecture is the fundamental building block of BERT. These concepts are covered next and detailed further in later chapters. After these two sections, we will discuss specific innovations and structures of the BERT model.

Encoder-decoder networks

...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image