Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Deep Learning for Genomics

You're reading from   Deep Learning for Genomics Data-driven approaches for genomics applications in life sciences and biotechnology

Arrow left icon
Product type Paperback
Published in Nov 2022
Publisher Packt
ISBN-13 9781804615447
Length 270 pages
Edition 1st Edition
Arrow right icon
Author (1):
Arrow left icon
Upendra Kumar Devisetty Upendra Kumar Devisetty
Author Profile Icon Upendra Kumar Devisetty
Upendra Kumar Devisetty
Arrow right icon
View More author details
Toc

Table of Contents (18) Chapters Close

Preface 1. Part 1 – Machine Learning in Genomics
2. Chapter 1: Introducing Machine Learning for Genomics FREE CHAPTER 3. Chapter 2: Genomics Data Analysis 4. Chapter 3: Machine Learning Methods for Genomic Applications 5. Part 2 – Deep Learning for Genomic Applications
6. Chapter 4: Deep Learning for Genomics 7. Chapter 5: Introducing Convolutional Neural Networks for Genomics 8. Chapter 6: Recurrent Neural Networks in Genomics 9. Chapter 7: Unsupervised Deep Learning with Autoencoders 10. Chapter 8: GANs for Improving Models in Genomics 11. Part 3 – Operationalizing models
12. Chapter 9: Building and Tuning Deep Learning Models 13. Chapter 10: Model Interpretability in Genomics 14. Chapter 11: Model Deployment and Monitoring 15. Chapter 12: Challenges, Pitfalls, and Best Practices for Deep Learning in Genomics 16. Index 17. Other Books You May Enjoy

What is unsupervised DL?

Unless you are lucky, the chances are that most of the data that comes to you is unlabeled, whether it is images on the web, text from a document, gene expression data from NGS experiments, and so on. Even if they come labeled, they are not clean and perfect datasets. This is where UL algorithms are useful. In UL, the algorithm is presented with the training datasets without any label, which means these datasets don’t have a particular outcome or specific instructions on what to do with them. The job of the UL model is to automatically extract features from unlabeled datasets and use those features to find hidden patterns. The unsupervised models first try to extract simple features from the data, then stitch them together to form more advanced features, and finally, come up with an outcome. Unlike SL models, these models don’t have a ground truth to evaluate the performance of the models using metrics such as accuracy, mean squared error (MSE...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image