Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Industrial IoT for Architects and Engineers

You're reading from   Industrial IoT for Architects and Engineers Architecting secure, robust, and scalable industrial IoT solutions with AWS

Arrow left icon
Product type Paperback
Published in Jan 2023
Publisher Packt
ISBN-13 9781803240893
Length 344 pages
Edition 1st Edition
Tools
Arrow right icon
Authors (2):
Arrow left icon
Bharath Sridhar Bharath Sridhar
Author Profile Icon Bharath Sridhar
Bharath Sridhar
Joey Bernal Joey Bernal
Author Profile Icon Joey Bernal
Joey Bernal
Arrow right icon
View More author details
Toc

Table of Contents (19) Chapters Close

Preface 1. Part 1:An Introduction to Industrial IoT and Moving Toward Industry 4.0
2. Chapter 1: Welcome to the IoT Revolution FREE CHAPTER 3. Chapter 2: Anatomy of an IoT Architecture 4. Chapter 3: In-Situ Environmental Monitoring 5. Chapter 4: Real-World Environmental Monitoring 6. Part 2: IoT Integration for Industrial Protocols and Systems
7. Chapter 5: OT and Industrial Control Systems 8. Chapter 6: Enabling Industrial IoT 9. Chapter 7: PLC Data Acquisition and Analysis 10. Chapter 8: Asset and Condition Monitoring 11. Part 3:Building Scalable, Robust, and Secure Solutions
12. Chapter 9: Taking It Up a Notch – Scalable, Robust, and Secure Architectures 13. Chapter 10: Intelligent Systems at the Edge 14. Chapter 11: Remote Monitoring Challenges 15. Chapter 12: Advanced Analytics and Machine Learning 16. Index 17. Other Books You May Enjoy Appendix: General Cybersecurity Topics

A very brief history lesson

History books and most university classes on this topic will agree that the world has undergone three previous industrial revolutions. For us, how we got to where we are is maybe not as important as where we are going, so we won’t belabor the history here, but we’ll provide some background to aid in your organizational discussions and help us pinpoint the reason for and the focus of this book.

The first Industrial Revolution

The first Industrial Revolution occurred in the late 1700s when mechanization based on water or steam power began. Traditional thought placed this beginning in the 1780s when the first mechanical loom was designed and built. While (relatively) easy to make, replicate, and ship, this allowed for the first major transition from production using hands to allowing machine-based tools to do the work.

Early industrial progress

There are, of course, precursors to the first Industrial Revolution. Recently, on a trip to the Netherlands, I was able to tour some windmills that advanced industry in the region as early as the 1600s, providing improvements to industries such as milling, weaving, and lumber production. Although windmill technology had been in service moving water in the region for centuries before this, this small evolution in leveraging the technology for other types of work allowed the Netherlands to advance into a new era, most notably in shipbuilding. Unfortunately, the technology could not be as easily exported since wind-driven machines were primarily a defining factor of the region. However, the inventiveness of the Dutch and the innovative use of gears, levers, and screws helped build the groundwork for future industry advances, evolving from, for example, farm animals for drawing water or agriculture.

The fact that much of the work was driven by steam was also important. The steam engine’s efficiency had greatly improved by this time, and it was now lighter and more transportable. Coal, and the ability to mine coal in significant quantities, was essential for powering these steam engines. Adapting these same engines moving in one direction or performing one motion to a different degree of movement allowed for more flexibility and complexity in industrial use. The loom was prominent in this phase because the textile industry was labor-intensive, and it became one of the first industries to adopt and see the benefit of new technology.

The second Industrial Revolution

The second Industrial Revolution often referred to as the technological revolution, started in the late 1800s and was a strong driver for the modern world we live in today. The expansion of almost everything we know and use in today’s world started during this period. Beginning with the growth of railroads and telegraphs, industry expanded further, bringing gas, water, sewer, and electricity and increasing globalization toward the end of the colonial age.

The expansion of electricity and assembly/production lines happened within this period. History credits Henry Ford for inventing the assembly line in 1913, paving the way for advanced mass production. Ford is also credited for advancements with the combustion engine, steel, and new fuels and materials that drove this exciting period of change and once again transformed many industries.

The third Industrial Revolution

The timelines are a little intertwined because advancements were frequently made that lent toward each distinct phase of technological evolution. These revolutions can seem almost continuous if traced from end to end with enough detail and advancements. There have always been significant breakthroughs that highlight the end of the last and the beginning of the next phase of advancement. The third Industrial Revolution started in the late 1900s and is called the Digital Revolution. This registers as a shift from analog technology to digital technology. The invention of the internet and smaller computing technologies allowed us to enter the information age.

The invention of the transistor in 1947 is a critical starting point for this era. However, it was several decades before this technology was adapted enough to be helpful on a large scale, with the ability to design and create integrated circuits consisting of hundreds of transistors. Eventually, this allowed the creation of the single-chip microprocessor in 1971 by Intel, allowing for desktop computers to become readily available.

Moving forward and the fourth Industrial Revolution

Hopefully, this short history lesson about the previous three industrial revolutions has helped you understand where we started and assisted you in visualizing how the technology crank continuously turns. Before you know it, advancement has occurred. In addition, each revolution has added tremendous value, advancing civilization, increasing productivity and safety, and moving the entire world another step forward.

The fourth Industrial Revolution should have no less lofty goals, with even more of a potential impact on civilization as a whole. I admit this sounds a bit too rosy, but think about it in terms of the effects on humanity and the world we live in. Efficiency itself means less waste, less use of energy, and potentially less pollution and impact on the environment. That, in itself, should make an effort to move forward worthwhile, and that these improvements can help increase productivity, quality, and revenue is icing on the cake.

Keep this in mind as you delve through this book and determine how to apply some of the ideas to your industry. The immediate goal may be to save or make more money; however, inside, you should know that you are hopefully doing your small part to help save the world.

Achieving the vision of Industry 4.0 requires effort and time and cannot be completed all in one go. This is especially true for legacy or brownfield industrial operations that have sometimes been in service for decades. Additionally, some industries produce widely varied results based on external conditions, such as farming.

Earlier in this chapter, we looked at the standard definition of Industry 4.0. It is a visionary statement, and there are many companies along the path to achieving that vision. However, many companies are just getting started or thinking about how to get started. Industry 4.0 is about data and the management of that data. Alongside data comes the necessary analysis, information, knowledge, and the innate ability to improve by looking at the right things. Industry 4.0 allows us to go beyond the decades-long approach of the status quo. We know from history that at every phase of change, in probably every sector, many felt that change was not required or too fast.

You have been reading a chapter from
Industrial IoT for Architects and Engineers
Published in: Jan 2023
Publisher: Packt
ISBN-13: 9781803240893
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image