The Go programming language
Since the invention of the C language in the early 1970s by Dennis Ritchie at Bell Labs, the computing industry has produced many popular languages that are based directly on (or have borrowed ideas from) its syntax. Commonly known as the C-family of languages, they can be split into two broad evolutionary branches. In one branch, derivatives such as C++, C#, and Java have evolved to adopt a strong type system, object orientation, and the use of compiled binaries. These languages, however, tend to have a slow build-deploy cycle and programmers are forced to adopt a complex object-oriented type system to attain runtime safety and speed of execution:
In the other evolutionary linguistic branch are languages such as Perl, Python, and JavaScript that are described as dynamic languages for their lack of type safety formalities, use of lightweight scripting syntax, and code interpretation instead of compilation. Dynamic languages have become the preferred tool for web and cloud scale development where speed and ease of deployment are valued over runtime safety. The interpreted nature of dynamic languages means, however, they generally run slower than their compiled counterparts. In addition, the lack of type safety at runtime means the correctness of the system scales poorly as the application grows.
Go was created as a system language at Google in 2007 by Robert Griesemer, Rob Pike, and Ken Thomson to handle the needs of application development. The designers of Go wanted to mitigate the issues with the aforementioned languages while creating a new language that is simple, safe, consistent, and predictable. As Rob Pike puts it:
"Go is an attempt to combine the safety and performance of a statically-typed language with the expressiveness and convenience of a dynamically-typed interpreted language."
Go borrows ideas from different languages that came before it, including:
- Simplified but concise syntax that is fun and easy to use
- A type of system that feels more like a dynamic language
- Support for object-oriented programming
- Statically typed for compilation and runtime safety
- Compiled to native binaries for fast runtime execution
- Near-zero compilation time that feels more like an interpreted language
- A simple concurrency idiom to leverage multi-core, multi-chip machines
- A garbage collector for safe and automatic memory management
The remainder of this chapter will walk you through an introductory set of steps that will give you a preview of the language and get you started with building and running your first Go program. It is a precursor to the topics that are covered in detail in the remaining chapters of the book. You are welcome to skip to other chapters if you already have a basic understanding of Go.