Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Mastering Object-oriented Python

You're reading from   Mastering Object-oriented Python If you want to master object-oriented Python programming this book is a must-have. With 750 code samples and a relaxed tutorial, it's a seamless route to programming Python.

Arrow left icon
Product type Paperback
Published in Apr 2014
Publisher Packt
ISBN-13 9781783280971
Length 634 pages
Edition Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Steven F. Lott Steven F. Lott
Author Profile Icon Steven F. Lott
Steven F. Lott
Arrow right icon
View More author details
Toc

Table of Contents (26) Chapters Close

Mastering Object-oriented Python
Credits
About the Author
About the Reviewers
www.PacktPub.com
Preface
Some Preliminaries
1. The __init__() Method 2. Integrating Seamlessly with Python Basic Special Methods FREE CHAPTER 3. Attribute Access, Properties, and Descriptors 4. The ABCs of Consistent Design 5. Using Callables and Contexts 6. Creating Containers and Collections 7. Creating Numbers 8. Decorators and Mixins – Cross-cutting Aspects 9. Serializing and Saving – JSON, YAML, Pickle, CSV, and XML 10. Storing and Retrieving Objects via Shelve 11. Storing and Retrieving Objects via SQLite 12. Transmitting and Sharing Objects 13. Configuration Files and Persistence 14. The Logging and Warning Modules 15. Designing for Testability 16. Coping With the Command Line 17. The Module and Package Design 18. Quality and Documentation Index

Summary


We looked at a number of considerations to design modules and packages. The parallels between a module and singleton class are deep. When we design a module, the essential questions of the encapsulation of the structure and processing are as relevant as they are for class design.

When we design a package, we need to be skeptical of the need for deeply nested structures. We'll need to use packages when there are variant implementations; we looked at a number of ways to handle this variability. We may also need to define a package to combine a number of modules into a single module-like package. We looked at how __init__.py can import from within the package.

Design considerations and trade-offs

We have a deep hierarchy of packaging techniques. We can simply organize the functionality into defined functions. We can combine the defined functions and their related data into a class. We can combine related classes into a module. We can combine related modules into a package.

When we think...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image