Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Practical Data Analysis

You're reading from   Practical Data Analysis For small businesses, analyzing the information contained in their data using open source technology could be game-changing. All you need is some basic programming and mathematical skills to do just that.

Arrow left icon
Product type Paperback
Published in Oct 2013
Publisher Packt
ISBN-13 9781783280995
Length 360 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Hector Cuesta Hector Cuesta
Author Profile Icon Hector Cuesta
Hector Cuesta
Arrow right icon
View More author details
Toc

Table of Contents (24) Chapters Close

Practical Data Analysis
Credits
Foreword
About the Author
Acknowledgments
About the Reviewers
www.PacktPub.com
Preface
1. Getting Started FREE CHAPTER 2. Working with Data 3. Data Visualization 4. Text Classification 5. Similarity-based Image Retrieval 6. Simulation of Stock Prices 7. Predicting Gold Prices 8. Working with Support Vector Machines 9. Modeling Infectious Disease with Cellular Automata 10. Working with Social Graphs 11. Sentiment Analysis of Twitter Data 12. Data Processing and Aggregation with MongoDB 13. Working with MapReduce 14. Online Data Analysis with IPython and Wakari Setting Up the Infrastructure Index

Implementing DTW


In this example, we will look for similarity in 684 images from 8 categories. We will use four imports of PIL, numpy, mlpy, and collections:

from PIL import Image
from numpy import array
import mlpy
from collections import OrderedDict

First, we need to obtain the time series representation of the images and store it in a dictionary (data) with the number of the image and its time series as data[fn] = list.

Tip

The performance of this process will lie in the number of images processed, so beware of the use of memory with large datasets.

data = {}

for fn in range(1,685):
  img = Image.open("ImgFolder\\{0}.jpg".format(fn))
  arr = array(img)
  list = []
  for n in arr: list.append(n[0][0])
  for n in arr: list.append(n[0][1])
  for n in arr: list.append(n[0][2])
  data[fn] = list

Then, we need to select an image for the reference, which will be compared with all the other images in the data dictionary:

reference = data[31]

Now, we need to apply the mlpy.dtw_std function to all the...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image