Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Artificial Vision and Language Processing for Robotics

You're reading from   Artificial Vision and Language Processing for Robotics Create end-to-end systems that can power robots with artificial vision and deep learning techniques

Arrow left icon
Product type Paperback
Published in Apr 2019
Publisher Packt
ISBN-13 9781838552268
Length 356 pages
Edition 1st Edition
Languages
Arrow right icon
Authors (3):
Arrow left icon
Gonzalo Molina Gallego Gonzalo Molina Gallego
Author Profile Icon Gonzalo Molina Gallego
Gonzalo Molina Gallego
Unai Garay Maestre Unai Garay Maestre
Author Profile Icon Unai Garay Maestre
Unai Garay Maestre
Álvaro Morena Alberola Álvaro Morena Alberola
Author Profile Icon Álvaro Morena Alberola
Álvaro Morena Alberola
Arrow right icon
View More author details
Toc

Table of Contents (12) Chapters Close

Artificial Vision and Language Processing for Robotics
Preface
1. Fundamentals of Robotics FREE CHAPTER 2. Introduction to Computer Vision 3. Fundamentals of Natural Language Processing 4. Neural Networks with NLP 5. Convolutional Neural Networks for Computer Vision 6. Robot Operating System (ROS) 7. Build a Text-Based Dialogue System (Chatbot) 8. Object Recognition to Guide a Robot Using CNNs 9. Computer Vision for Robotics Appendix

Fundamentals of CNNs


In this topic, we will see how CNNs work and explain the process of convolving an image.

We know that images are made up of pixels, and if the image is in RGB, for example, it will have three channels where each letter/color (Red-Green-Blue) has its own channel with a set of pixels of the same size. Fully-connected neural networks do not represent this depth in an image in every layer. Instead, they have a single dimension to represent this depth, which is not enough. Furthermore, they connect every single neuron of one layer to every single neuron of the next layer, and so on. This in turn results in lower performance, meaning you would have to train a network for longer and would still not get good results.

CNNs are a category of neural networks that has ended up being very effective for tasks such as classification and image recognition. Although, they also work very well for sound and text data. CNNs consist of an input, hidden layers, and an output layer, just like...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image