Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Deep Learning Essentials

You're reading from   Deep Learning Essentials Your hands-on guide to the fundamentals of deep learning and neural network modeling

Arrow left icon
Product type Paperback
Published in Jan 2018
Publisher Packt
ISBN-13 9781785880360
Length 284 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Authors (3):
Arrow left icon
Wei Di Wei Di
Author Profile Icon Wei Di
Wei Di
Anurag Bhardwaj Anurag Bhardwaj
Author Profile Icon Anurag Bhardwaj
Anurag Bhardwaj
Jianing Wei Jianing Wei
Author Profile Icon Jianing Wei
Jianing Wei
Arrow right icon
View More author details
Toc

Table of Contents (12) Chapters Close

Preface 1. Why Deep Learning? FREE CHAPTER 2. Getting Yourself Ready for Deep Learning 3. Getting Started with Neural Networks 4. Deep Learning in Computer Vision 5. NLP - Vector Representation 6. Advanced Natural Language Processing 7. Multimodality 8. Deep Reinforcement Learning 9. Deep Learning Hacks 10. Deep Learning Trends 11. Other Books You May Enjoy

Future potential and challenges

Despite the exciting past and promising prospects, challenges are still there. As we open this Pandora's box of AI, one of the key questions is, where are we going? What can it do? This question has been addressed by people from various backgrounds. In one of the interviews with Andrew Ng, he posed his point of view that while today’s AI is making rapid progress, such momentum will slow down up until AI reaches a human level of performance. There are mainly three reasons for this, the feasibility of the things a human can do, the massive size of data, and the distinctive human ability called insight. Still, it sounds very impressive, and might be a bit scary, that one day AI will surpass humans and perhaps replace humans in many areas:

When AI surpasses human performance, the progress slows down

There are basically two main streams of AI, the positive ones, and the passive ones. As the creator of Paypal, SpaceX, and Tesla Elon Musk commented one-day:

Robots will do everything better than us, and people should be really concerned by it.

But right now, most AI technology can only do limited work in certain domains. In the area of deep learning, there are perhaps more challenges than the successful adoptions in people's life. Until now, most of the progress in deep learning has been made by exploring various architectures, but we still lack the fundamental understanding of why and how deep learning has achieved such success. Additionally, there are limited studies on why and how to choose structural features and how to efficiently tune hyper-parameters. Most of the current approaches are still based on validation or cross-validation, which is far from being theoretically grounded and is more on the side of experimental and ad hoc (Plamen Angelov and Alessandro Sperduti, Challenges in Deep Learning, 2016). From a data source perspective, how to deal with fast moving and streamed data, high dimensional data, structured data in the form of sequences (time series, audio and video signals, DNA, and so on), trees (XML documents, parse trees, RNA, and so on), graphs (chemical compounds, social networks, parts of an image, and so on) is still in development, especially when concerning their computational efficiency.

Additionally, there is a need for multi-task unified modeling. As the Google DeepMind’s research scientist Raia Hadsell summed it up:

There is no neural network in the world, and no method right now that can be trained to identify objects and images, play Space Invaders, and listen to music.

Until now, many trained models have specialized in just one or two areas, such as recognizing faces, cars, human actions, or understanding speech, which is far from true AI. Whereas a truly intelligent module would not only be able to process and understand multi-source inputs, but also make decisions for various tasks or sequences of tasks. The question of how to best apply the knowledge learned from one domain to other domains and adapt quickly remains unanswered.

While many optimization approaches have been proposed in the past, such as Gradient Descent or Stochastic Gradient Descent, Adagrad, AdaDelta, or Adma (Adaptive Moment Estimation), some known weaknesses, such as trap at local minima, lower performance, and high computational time still occur in deep learning. New research in this direction would yield fundamental impacts on deep learning performance and efficiency. It would be interesting to see whether global optimization techniques can be used to assist deep learning regarding the aforementioned problems.

Last but not least, there are perhaps more opportunities than challenges to be faced when applying deep learning or even developing new types of deep learning algorithms to fields that so far have not yet been benefited from. From finance to e-commerce, social networks to bioinformatics, we have seen tremendous growth in the interest of leveraging deep learning. Powered by deep learning, we are seeing applications, startups, and services which are changing our life at a much faster pace.

You have been reading a chapter from
Deep Learning Essentials
Published in: Jan 2018
Publisher: Packt
ISBN-13: 9781785880360
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image