Imagine a scenario where you've been given an image and been asked to predict which pixel corresponds to what object. So far, when we have been predicting the class of an object and the bounding box corresponding to the object, we passed the image through a network, which then passes the image through a backbone architecture (such as VGG or ResNet), flattens the output at a certain layer, and connects additional dense layers before making predictions for the class and bounding box offsets. However, in the case of image segmentation, where the output shape is the same as that of the input image's shape, flattening the convolutions' outputs and then reconstructing the image might result in a loss of information. Furthermore, the contours and shapes present in the original image will not vary in the output image in the case of image segmentation, so the networks we have dealt with so far (which flatten the last layer and connect additional...
Germany
Slovakia
Canada
Brazil
Singapore
Hungary
Philippines
Mexico
Thailand
Ukraine
Luxembourg
Estonia
Lithuania
Norway
Chile
United States
Great Britain
India
Spain
South Korea
Ecuador
Colombia
Taiwan
Switzerland
Indonesia
Cyprus
Denmark
Finland
Poland
Malta
Czechia
New Zealand
Austria
Turkey
France
Sweden
Italy
Egypt
Belgium
Portugal
Slovenia
Ireland
Romania
Greece
Argentina
Malaysia
South Africa
Netherlands
Bulgaria
Latvia
Australia
Japan
Russia