Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Python Data Science Essentials
Python Data Science Essentials

Python Data Science Essentials: A practitioner's guide covering essential data science principles, tools, and techniques , Third Edition

Arrow left icon
Profile Icon Alberto Boschetti Profile Icon Luca Massaron
Arrow right icon
$19.99 per month
Full star icon Full star icon Full star icon Full star icon Full star icon 5 (2 Ratings)
Paperback Sep 2018 472 pages 3rd Edition
eBook
$27.98 $39.99
Paperback
$48.99
Subscription
Free Trial
Renews at $19.99p/m
Arrow left icon
Profile Icon Alberto Boschetti Profile Icon Luca Massaron
Arrow right icon
$19.99 per month
Full star icon Full star icon Full star icon Full star icon Full star icon 5 (2 Ratings)
Paperback Sep 2018 472 pages 3rd Edition
eBook
$27.98 $39.99
Paperback
$48.99
Subscription
Free Trial
Renews at $19.99p/m
eBook
$27.98 $39.99
Paperback
$48.99
Subscription
Free Trial
Renews at $19.99p/m

What do you get with a Packt Subscription?

Free for first 7 days. $19.99 p/m after that. Cancel any time!
Product feature icon Unlimited ad-free access to the largest independent learning library in tech. Access this title and thousands more!
Product feature icon 50+ new titles added per month, including many first-to-market concepts and exclusive early access to books as they are being written.
Product feature icon Innovative learning tools, including AI book assistants, code context explainers, and text-to-speech.
Product feature icon Thousands of reference materials covering every tech concept you need to stay up to date.
Subscribe now
View plans & pricing
Table of content icon View table of contents Preview book icon Preview Book

Python Data Science Essentials

Data Munging

We are just getting into the action with data! In this chapter, you'll learn how to munge data. What does data munging mean ?

The term mung is a technical term that was coined about half a century ago by students of at Massachusetts Institute of Technology (MIT). Munging means to change, in a series of well-specified and reversible steps, a piece of original data to a completely different (and hopefully more useful) one. Deep-rooted in hacker culture, munging is often described in the data science pipeline using other, almost synonymous, terms such as data wrangling or data preparation.

Given such premises, in this chapter, the following topics will be covered:

  • The data science process (so that you'll know what is going on and what's next)
  • Uploading data from a file
  • Selecting the data you need
  • Cleaning up any missing or wrong data
  • Adding, inserting...

The data science process

Although every data science project is different, for our illustrative purposes, we can partition an ideal data science project into a series of reduced and simplified phases.

The process starts by obtaining data (a phase known as data ingestion). Data ingestion implies a series of possible alternatives, from simply uploading data to assembling it from RDBMS or NoSQL repositories, or from synthetically generating it to scraping it from web APIs or HTML pages.

Especially when faced with novel challenges, uploading data can reveal itself as a critical part of a data scientist's work. Your data can arrive from multiple sources: databases, CSV or Excel files, raw HTML, images, sound recordings, APIs (if you are clueless about what an API is, you can read a good tutorial about APIs with Python here: https://www.dataquest.io/blog/python-api-tutorial/) providing...

Data loading and preprocessing with pandas

In the previous chapter, we discussed where to find useful datasets and examined the basic import commands of Python packages. In this section, having kept your toolbox ready, you are about to learn how to structurally load, manipulate, process, and polish data using pandas and NumPy.

Fast and easy data loading

Let's start with a CSV file and pandas. The pandas library offers the most accessible and complete functionality to load tabular data from a file (or a URL). By default, it will store data in a specialized pandas data structure, index each row, separate variables by custom delimiters, infer the right data type for each column, convert data (if necessary), as well as parse...

Working with categorical and textual data

Typically, you'll find yourself dealing with two main kinds of data: categorical and numerical. Numerical data, such as temperature, amount of money, days of usage, or house number, can be composed of either floating-point numbers (such as 1.0, -2.3, 99.99, and so on) or integers (such as -3, 9, 0, 1, and so on). Each value that the data can assume has a direct relation with others since they're comparable. In other words, you can say that a feature with a value of 2.0 is greater (actually, it is double) than a feature that assumes a value of 1.0. This type of data is very well-defined and comprehensible, with binary operators such as equal to, greater than, and less than.

The other type of data you might see in your career is the categorical type. A categorical datum expresses an attribute that cannot be measured and assumes...

Data processing with NumPy

Having introduced the essential pandas commands to upload and preprocess your data in memory completely, in smaller batches, or even in single data rows, at this point of the data science pipeline, you'll have to work on it in order to prepare a suitable data matrix for your supervised and unsupervised learning procedures.

As a best practice, we advise that you divide the task between a phase of your work when your data is still heterogeneous (a mix of numerical and symbolic values) and another phase when it is turned into a numeric table of data. A table of data, or matrix, is arranged in rows that represent your examples, and columns that contain the characteristic observed values of your examples, which are your variables.

Following our advice, you have to wrangle between two key Python packages for scientific analysis, pandas and NumPy, and...

Creating NumPy arrays

There is more than one way to create NumPy arrays. The following are some of the ways you can create them:

  • By transforming an existing data structure into an array
  • By creating an array from scratch and populating it with default or calculated values
  • By uploading some data from a disk into an array

If you are going to transform an existing data structure, the odds are in favor of you working with a structured list or a pandas DataFrame.

From lists to unidimensional arrays

One of the most common situations you will encounter when working with data is transforming a list into an array.

When operating such a transformation, it is important to consider the objects the lists contain because this will determine...

NumPy fast operation and computations

When arrays need to be manipulated by mathematical operations, you just need to apply the operation on the array with respect to a numerical constant (a scalar), or an array of the same shape:

In: import numpy as np
a = np.arange(5).reshape(1,5)
a += 1
a*a

Out: array([[ 1, 4, 9, 16, 25]])

As a result, the operation is to be performed element-wise; that is, every element of the array is operated by either the scalar value or the corresponding element of the other array.

When operating on arrays of different dimensions, it is still possible to obtain element-wise operations without having to restructure the data if one of the corresponding dimensions is 1. In fact, in such a case, the dimension of size 1 is stretched until it matches the dimension of the corresponding array. This conversion is called broadcasting.

For instance:

...

Summary

In this chapter, we discussed how pandas and NumPy can provide you with all the tools to load and effectively mung your data.

We started with pandas and its data structures, DataFrames and series, and went through to the final NumPy two-dimensional arrays with a data structure suitable for subsequent experimentation and machine learning. In doing so, we touched upon subjects such as the manipulation of vectors and matrices, categorical data encoding, textual data processing, fixing missing data and errors, slicing and dicing, merging, and stacking.

pandas and NumPy surely offer many more functions than the essential building blocks we presented here, as well as the commands and procedures illustrated. You can now take any available raw data and apply all the cleaning and shaping transformations necessary for your data science project.

In the next chapter, we will take...

Left arrow icon Right arrow icon
Download code icon Download Code

Key benefits

  • •A one-stop guide to Python libraries such as pandas and NumPy
  • •Comprehensive coverage of data science operations such as data cleaning and data manipulation
  • •Choose scalable learning algorithms for your data science tasks

Description

Fully expanded and upgraded, the latest edition of Python Data Science Essentials will help you succeed in data science operations using the most common Python libraries. This book offers up-to-date insight into the core of Python, including the latest versions of the Jupyter Notebook, NumPy, pandas, and scikit-learn. The book covers detailed examples and large hybrid datasets to help you grasp essential statistical techniques for data collection, data munging and analysis, visualization, and reporting activities. You will also gain an understanding of advanced data science topics such as machine learning algorithms, distributed computing, tuning predictive models, and natural language processing. Furthermore, You’ll also be introduced to deep learning and gradient boosting solutions such as XGBoost, LightGBM, and CatBoost. By the end of the book, you will have gained a complete overview of the principal machine learning algorithms, graph analysis techniques, and all the visualization and deployment instruments that make it easier to present your results to an audience of both data science experts and business users

Who is this book for?

If you’re a data science entrant, data analyst, or data engineer, this book will help you get ready to tackle real-world data science problems without wasting any time. Basic knowledge of probability/statistics and Python coding experience will assist you in understanding the concepts covered in this book.

What you will learn

  • • Set up your data science toolbox on Windows, Mac, and Linux
  • • Use the core machine learning methods offered by the scikit-learn library
  • • Manipulate, fix, and explore data to solve data science problems
  • • Learn advanced explorative and manipulative techniques to solve data operations
  • • Optimize your machine learning models for optimized performance
  • • Explore and cluster graphs, taking advantage of interconnections and links in your data

Product Details

Country selected
Publication date, Length, Edition, Language, ISBN-13
Publication date : Sep 28, 2018
Length: 472 pages
Edition : 3rd
Language : English
ISBN-13 : 9781789537864
Category :
Languages :
Concepts :

What do you get with a Packt Subscription?

Free for first 7 days. $19.99 p/m after that. Cancel any time!
Product feature icon Unlimited ad-free access to the largest independent learning library in tech. Access this title and thousands more!
Product feature icon 50+ new titles added per month, including many first-to-market concepts and exclusive early access to books as they are being written.
Product feature icon Innovative learning tools, including AI book assistants, code context explainers, and text-to-speech.
Product feature icon Thousands of reference materials covering every tech concept you need to stay up to date.
Subscribe now
View plans & pricing

Product Details

Publication date : Sep 28, 2018
Length: 472 pages
Edition : 3rd
Language : English
ISBN-13 : 9781789537864
Category :
Languages :
Concepts :

Packt Subscriptions

See our plans and pricing
Modal Close icon
$19.99 billed monthly
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Simple pricing, no contract
$199.99 billed annually
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just $5 each
Feature tick icon Exclusive print discounts
$279.99 billed in 18 months
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just $5 each
Feature tick icon Exclusive print discounts

Frequently bought together


Stars icon
Total $ 141.97
Data Science Algorithms in a Week
$43.99
Python Data Science Essentials
$48.99
Principles of Data Science
$48.99
Total $ 141.97 Stars icon
Banner background image

Table of Contents

10 Chapters
First Steps Chevron down icon Chevron up icon
Data Munging Chevron down icon Chevron up icon
The Data Pipeline Chevron down icon Chevron up icon
Machine Learning Chevron down icon Chevron up icon
Visualization, Insights, and Results Chevron down icon Chevron up icon
Social Network Analysis Chevron down icon Chevron up icon
Deep Learning Beyond the Basics Chevron down icon Chevron up icon
Spark for Big Data Chevron down icon Chevron up icon
Strengthen Your Python Foundations Chevron down icon Chevron up icon
Other Books You May Enjoy Chevron down icon Chevron up icon

Customer reviews

Rating distribution
Full star icon Full star icon Full star icon Full star icon Full star icon 5
(2 Ratings)
5 star 100%
4 star 0%
3 star 0%
2 star 0%
1 star 0%
Enrique H. Apr 02, 2023
Full star icon Full star icon Full star icon Full star icon Full star icon 5
Esta serie de Packt sobre ciencia de datos ha sido muy útil por su fácil lenguaje y ejercicios entendibles.
Amazon Verified review Amazon
Amidu Mac Morrison Mar 17, 2021
Full star icon Full star icon Full star icon Full star icon Full star icon 5
Great product that worth the price.
Amazon Verified review Amazon
Get free access to Packt library with over 7500+ books and video courses for 7 days!
Start Free Trial

FAQs

What is included in a Packt subscription? Chevron down icon Chevron up icon

A subscription provides you with full access to view all Packt and licnesed content online, this includes exclusive access to Early Access titles. Depending on the tier chosen you can also earn credits and discounts to use for owning content

How can I cancel my subscription? Chevron down icon Chevron up icon

To cancel your subscription with us simply go to the account page - found in the top right of the page or at https://subscription.packtpub.com/my-account/subscription - From here you will see the ‘cancel subscription’ button in the grey box with your subscription information in.

What are credits? Chevron down icon Chevron up icon

Credits can be earned from reading 40 section of any title within the payment cycle - a month starting from the day of subscription payment. You also earn a Credit every month if you subscribe to our annual or 18 month plans. Credits can be used to buy books DRM free, the same way that you would pay for a book. Your credits can be found in the subscription homepage - subscription.packtpub.com - clicking on ‘the my’ library dropdown and selecting ‘credits’.

What happens if an Early Access Course is cancelled? Chevron down icon Chevron up icon

Projects are rarely cancelled, but sometimes it's unavoidable. If an Early Access course is cancelled or excessively delayed, you can exchange your purchase for another course. For further details, please contact us here.

Where can I send feedback about an Early Access title? Chevron down icon Chevron up icon

If you have any feedback about the product you're reading, or Early Access in general, then please fill out a contact form here and we'll make sure the feedback gets to the right team. 

Can I download the code files for Early Access titles? Chevron down icon Chevron up icon

We try to ensure that all books in Early Access have code available to use, download, and fork on GitHub. This helps us be more agile in the development of the book, and helps keep the often changing code base of new versions and new technologies as up to date as possible. Unfortunately, however, there will be rare cases when it is not possible for us to have downloadable code samples available until publication.

When we publish the book, the code files will also be available to download from the Packt website.

How accurate is the publication date? Chevron down icon Chevron up icon

The publication date is as accurate as we can be at any point in the project. Unfortunately, delays can happen. Often those delays are out of our control, such as changes to the technology code base or delays in the tech release. We do our best to give you an accurate estimate of the publication date at any given time, and as more chapters are delivered, the more accurate the delivery date will become.

How will I know when new chapters are ready? Chevron down icon Chevron up icon

We'll let you know every time there has been an update to a course that you've bought in Early Access. You'll get an email to let you know there has been a new chapter, or a change to a previous chapter. The new chapters are automatically added to your account, so you can also check back there any time you're ready and download or read them online.

I am a Packt subscriber, do I get Early Access? Chevron down icon Chevron up icon

Yes, all Early Access content is fully available through your subscription. You will need to have a paid for or active trial subscription in order to access all titles.

How is Early Access delivered? Chevron down icon Chevron up icon

Early Access is currently only available as a PDF or through our online reader. As we make changes or add new chapters, the files in your Packt account will be updated so you can download them again or view them online immediately.

How do I buy Early Access content? Chevron down icon Chevron up icon

Early Access is a way of us getting our content to you quicker, but the method of buying the Early Access course is still the same. Just find the course you want to buy, go through the check-out steps, and you’ll get a confirmation email from us with information and a link to the relevant Early Access courses.

What is Early Access? Chevron down icon Chevron up icon

Keeping up to date with the latest technology is difficult; new versions, new frameworks, new techniques. This feature gives you a head-start to our content, as it's being created. With Early Access you'll receive each chapter as it's written, and get regular updates throughout the product's development, as well as the final course as soon as it's ready.We created Early Access as a means of giving you the information you need, as soon as it's available. As we go through the process of developing a course, 99% of it can be ready but we can't publish until that last 1% falls in to place. Early Access helps to unlock the potential of our content early, to help you start your learning when you need it most. You not only get access to every chapter as it's delivered, edited, and updated, but you'll also get the finalized, DRM-free product to download in any format you want when it's published. As a member of Packt, you'll also be eligible for our exclusive offers, including a free course every day, and discounts on new and popular titles.