Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Active Machine Learning with Python

You're reading from   Active Machine Learning with Python Refine and elevate data quality over quantity with active learning

Arrow left icon
Product type Paperback
Published in Mar 2024
Publisher Packt
ISBN-13 9781835464946
Length 176 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Margaux Masson-Forsythe Margaux Masson-Forsythe
Author Profile Icon Margaux Masson-Forsythe
Margaux Masson-Forsythe
Arrow right icon
View More author details
Toc

Table of Contents (13) Chapters Close

Preface 1. Part 1: Fundamentals of Active Machine Learning
2. Chapter 1: Introducing Active Machine Learning FREE CHAPTER 3. Chapter 2: Designing Query Strategy Frameworks 4. Chapter 3: Managing the Human in the Loop 5. Part 2: Active Machine Learning in Practice
6. Chapter 4: Applying Active Learning to Computer Vision 7. Chapter 5: Leveraging Active Learning for Big Data 8. Part 3: Applying Active Machine Learning to Real-World Projects
9. Chapter 6: Evaluating and Enhancing Efficiency 10. Chapter 7: Utilizing Tools and Packages for Active ML 11. Index 12. Other Books You May Enjoy

Exploring query strategies scenarios

Active learning can be implemented in different ways, depending on the nature of the unlabeled data and how the queries are performed. There are three main scenarios to consider when implementing active learning:

  • Membership query synthesis
  • Stream-based selective sampling
  • Pool-based sampling

These scenarios offer different ways to optimize and improve the active learning process. Understanding these scenarios can help you make informed decisions and choose the most suitable approach for your specific needs. In this section, we will explore each of these scenarios.

Membership query synthesis

In membership query synthesis, the active learner has the ability to create its own unlabeled data points in order to improve its training. This is done by generating new data points from scratch and then requesting the oracle for labels, as depicted in Figure 1.2. By incorporating these newly labeled data points into its training...

You have been reading a chapter from
Active Machine Learning with Python
Published in: Mar 2024
Publisher: Packt
ISBN-13: 9781835464946
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image