Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Data Wrangling with Python

You're reading from   Data Wrangling with Python Creating actionable data from raw sources

Arrow left icon
Product type Paperback
Published in Feb 2019
Publisher Packt
ISBN-13 9781789800111
Length 452 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Authors (2):
Arrow left icon
Shubhadeep Roychowdhury Shubhadeep Roychowdhury
Author Profile Icon Shubhadeep Roychowdhury
Shubhadeep Roychowdhury
Dr. Tirthajyoti Sarkar Dr. Tirthajyoti Sarkar
Author Profile Icon Dr. Tirthajyoti Sarkar
Dr. Tirthajyoti Sarkar
Arrow right icon
View More author details
Toc

Table of Contents (12) Chapters Close

Data Wrangling with Python
Preface
1. Introduction to Data Wrangling with Python 2. Advanced Data Structures and File Handling FREE CHAPTER 3. Introduction to NumPy, Pandas, and Matplotlib 4. A Deep Dive into Data Wrangling with Python 5. Getting Comfortable with Different Kinds of Data Sources 6. Learning the Hidden Secrets of Data Wrangling 7. Advanced Web Scraping and Data Gathering 8. RDBMS and SQL 9. Application of Data Wrangling in Real Life Appendix

Statistics and Visualization with NumPy and Pandas


One of the great advantages of using libraries such as NumPy and pandas is that a plethora of built-in statistical and visualization methods are available, for which we don't have to search for and write new code. Furthermore, most of these subroutines are written using C or Fortran code (and pre-compiled), making them extremely fast to execute.

Refresher of Basic Descriptive Statistics (and the Matplotlib Library for Visualization)

For any data wrangling task, it is quite useful to extract basic descriptive statistics from the data and create some simple visualizations/plots. These plots are often the first step in identifying fundamental patterns as well as oddities (if present) in the data. In any statistical analysis, descriptive statistics is the first step, followed by inferential statistics, which tries to infer the underlying distribution or process from which the data might have been generated.

As the inferential statistics are intimately...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image