Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Machine Learning with R

You're reading from   Machine Learning with R Expert techniques for predictive modeling

Arrow left icon
Product type Paperback
Published in Apr 2019
Publisher Packt
ISBN-13 9781788295864
Length 458 pages
Edition 3rd Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Brett Lantz Brett Lantz
Author Profile Icon Brett Lantz
Brett Lantz
Arrow right icon
View More author details
Toc

Table of Contents (16) Chapters Close

Preface 1. Introducing Machine Learning FREE CHAPTER 2. Managing and Understanding Data 3. Lazy Learning – Classification Using Nearest Neighbors 4. Probabilistic Learning – Classification Using Naive Bayes 5. Divide and Conquer – Classification Using Decision Trees and Rules 6. Forecasting Numeric Data – Regression Methods 7. Black Box Methods – Neural Networks and Support Vector Machines 8. Finding Patterns – Market Basket Analysis Using Association Rules 9. Finding Groups of Data – Clustering with k-means 10. Evaluating Model Performance 11. Improving Model Performance 12. Specialized Machine Learning Topics Other Books You May Enjoy
Leave a review - let other readers know what you think
Index

Working with domain-specific data

Machine learning has undoubtedly been applied to problems across every discipline. Although the basic techniques are similar across all domains, some are so specialized that communities have formed to develop solutions to the challenges unique to the field. This leads to the discovery of new techniques and new terminology that is relevant only to domain-specific problems.

This section covers a pair of domains that use machine learning techniques extensively, but require specialized knowledge to unlock their full potential. Since entire books have been written on these topics, this will serve as only the briefest of introductions. For more detail, seek out the help provided by the resources cited in each section.

Analyzing bioinformatics data

The field of bioinformatics is concerned with the application of computers and data analysis to the biological domain, particularly with regard to better understanding the genome. As genetic data is unique compared to...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image