Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Machine Learning with Swift

You're reading from   Machine Learning with Swift Artificial Intelligence for iOS

Arrow left icon
Product type Paperback
Published in Feb 2018
Publisher Packt
ISBN-13 9781787121515
Length 378 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Authors (3):
Arrow left icon
Jojo Moolayil Jojo Moolayil
Author Profile Icon Jojo Moolayil
Jojo Moolayil
Oleksandr Baiev Oleksandr Baiev
Author Profile Icon Oleksandr Baiev
Oleksandr Baiev
Alexander Sosnovshchenko Alexander Sosnovshchenko
Author Profile Icon Alexander Sosnovshchenko
Alexander Sosnovshchenko
Arrow right icon
View More author details
Toc

Table of Contents (14) Chapters Close

Preface 1. Getting Started with Machine Learning FREE CHAPTER 2. Classification – Decision Tree Learning 3. K-Nearest Neighbors Classifier 4. K-Means Clustering 5. Association Rule Learning 6. Linear Regression and Gradient Descent 7. Linear Classifier and Logistic Regression 8. Neural Networks 9. Convolutional Neural Networks 10. Natural Language Processing 11. Machine Learning Libraries 12. Optimizing Neural Networks for Mobile Devices 13. Best Practices

Implementing layers in Swift


There are at least three options to consider when you want to implement a NN in Swift:

  • Implement it in pure Swift (which may be useful mostly for the study purposes). A lot of implementations of different complexity and functionality can be found on the GitHub. It looks like every programmer at some stage of her/his life starts to write a NN library in her/his favourite programming language.
  • Implement it using low-level acceleration libraries—Metal Performance Shaders, or BNNS.
  • Implement it using some general-purpose NN framework—Keras, TensorFlow, PyTorch, and so on—and then convert it to Core ML format.

Note

The Metal Performance Shader library includes three types of activations for NNs: ReLU, sigmoid, and TanH (MPSCNNNeuronReLU, MPSCNNNeuronSigmoid, MPSCNNNeuronTanH). For more information refer to: https://developer.apple.com/reference/metalperformanceshaders.

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image