Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
R Deep Learning Projects

You're reading from   R Deep Learning Projects Master the techniques to design and develop neural network models in R

Arrow left icon
Product type Paperback
Published in Feb 2018
Publisher Packt
ISBN-13 9781788478403
Length 258 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Authors (2):
Arrow left icon
Yuxi (Hayden) Liu Yuxi (Hayden) Liu
Author Profile Icon Yuxi (Hayden) Liu
Yuxi (Hayden) Liu
Pablo Maldonado Pablo Maldonado
Author Profile Icon Pablo Maldonado
Pablo Maldonado
Arrow right icon
View More author details
Toc

Warm-up – data exploration


Let's get things moving with a tiny example. Let's look at this tiny reviews corpus:

text <- c("The food is typical Czech, and the beer is good. The service is quick, if short and blunt, and the waiting on staff could do with a bit of customer service training",
          "The food was okay. Really not bad, but we had better",
          "A venue full of locals. No nonsense, no gimmicks. Only went for drinks which were good and cheap. People friendly enough.",
          "Great food, lovely staff, very reasonable prices considering the location!")

We will do some simple analysis here, which will help us appreciate some of the subtleties of sentiment analysis.

Working with tidy text

For this, we will use the tidytext package. This package is built on the philosophy of tidy data, introduced by Hadley Wickham in his 2014 paper (https://www.jstatsoft.org/article/view/v059i10). A dataset is tidy if the following three conditions are satisfied:

  • Each variable is a column
  • Each...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image