Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
 Architectural Patterns and Techniques for Developing IoT Solutions

You're reading from   Architectural Patterns and Techniques for Developing IoT Solutions Build IoT applications using digital twins, gateways, rule engines, AI/ML integration, and related patterns

Arrow left icon
Product type Paperback
Published in Sep 2023
Publisher Packt
ISBN-13 9781803245492
Length 304 pages
Edition 1st Edition
Tools
Arrow right icon
Author (1):
Arrow left icon
Jasbir Singh Dhaliwal Jasbir Singh Dhaliwal
Author Profile Icon Jasbir Singh Dhaliwal
Jasbir Singh Dhaliwal
Arrow right icon
View More author details
Toc

Table of Contents (20) Chapters Close

Preface 1. Part 1: Understanding IoT Patterns
2. Chapter 1: Introduction to IoT Patterns FREE CHAPTER 3. Chapter 2: IoT Patterns for Field Devices 4. Chapter 3: IoT Patterns for the Central Server 5. Part 2: IoT Patterns in Action
6. Chapter 4: Pattern Implementation in the Consumer Domain 7. Chapter 5: Pattern Implementation in the Smart City Domain 8. Chapter 6: Pattern Implementation in the Retail Domain 9. Chapter 7: Pattern Implementation in the Manufacturing Domain 10. Chapter 8: Pattern Implementation in the Agriculture Domain 11. Part 3: Implementation Considerations
12. Chapter 9: Sensor and Actuator Selection Guidelines 13. Chapter 10: Analytics in the IoT Context 14. Chapter 11: Security in the IoT Context 15. Part 4: Extending IoT Solutions
16. Chapter 12: Exploring Synergies with Emerging Technologies 17. Chapter 13: Epilogue 18. Index 19. Other Books You May Enjoy

IoT reference architecture

The IoT reference architecture follows a layered model, as shown in the following diagram:

Figure 1.2 – Layered IoT reference architecture

Figure 1.2 – Layered IoT reference architecture

Let’s look at these layers in more detail:

  • Perception/actuation layer: This layer indicates the physical layer where sensors (pressure, temperature, and so on) gather information about the environment. In turn, the environment is affected by the actuators (electric motor, thermostat control, and so on).
  • Connectivity layer: This layer provides the connectivity required to send data (perception data from sensors and control commands to actuators, and so on) to/from the aggregation/processing layer. This layer is realized by leveraging connectivity options (5G, Wi-Fi, NB-IoT, LoRA, and so on). The decision to choose a specific connectivity option depends on various factors such as range and bandwidth.
  • Processing layer: The processing layer ingests, analyzes, and stores data received from the connectivity layer. The processing can be performed either near the data source (edge computing) or in a private/public cloud. Data processing and storage elements, such as databases, data streaming engines, and AI/ML algorithms, form part of this layer.
  • Services layer: This layer connects the processing layer to the application layer. Another way of looking at this layer is considering it as a set of APIs that can be consumed by the application layer to develop IoT applications such as smart homes, precision agriculture, smart manufacturing, and more.
  • Application layer: This layer represents the applications that are to be used by end users. These applications are typically hosted at the edge or in the cloud (central server) and are consumed using mobile devices as mobile apps. Alternatively, they can be deployed on a web server and accessed using browsers.

The IoT patterns listed in subsequent chapters will align with the IoT reference architecture that we just discussed. Additionally, other important IoT topics listed in the latter part of the book (such as data analytics and IoT security) will also build upon the understanding of this concept.

The layered reference architecture provides various benefits, such as independent scalability of different layers and enhanced maintainability as change is restricted to specific layers. The IoT patterns will help you develop the required functionality at the specific layer in less time and in a reproducible fashion. The architectural patterns (detailed in subsequent chapters) that are relevant to the different layers of the reference architecture are shown in the following diagram:

Figure 1.3 – IoT patterns realized at different layers of the reference architecture

Figure 1.3 – IoT patterns realized at different layers of the reference architecture

Next, we will look at the unique requirements that we should be aware of while implementing IoT use cases.

You have been reading a chapter from
Architectural Patterns and Techniques for Developing IoT Solutions
Published in: Sep 2023
Publisher: Packt
ISBN-13: 9781803245492
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image