Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Hands-On Simulation Modeling with Python

You're reading from   Hands-On Simulation Modeling with Python Develop simulation models to get accurate results and enhance decision-making processes

Arrow left icon
Product type Paperback
Published in Jul 2020
Publisher Packt
ISBN-13 9781838985097
Length 346 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Giuseppe Ciaburro Giuseppe Ciaburro
Author Profile Icon Giuseppe Ciaburro
Giuseppe Ciaburro
Arrow right icon
View More author details
Toc

Table of Contents (16) Chapters Close

Preface 1. Section 1: Getting Started with Numerical Simulation
2. Chapter 1: Introducing Simulation Models FREE CHAPTER 3. Chapter 2: Understanding Randomness and Random Numbers 4. Chapter 3: Probability and Data Generation Processes 5. Section 2: Simulation Modeling Algorithms and Techniques
6. Chapter 4: Exploring Monte Carlo Simulations 7. Chapter 5: Simulation-Based Markov Decision Processes 8. Chapter 6: Resampling Methods 9. Chapter 7: Using Simulation to Improve and Optimize Systems 10. Section 3: Real-World Applications
11. Chapter 8: Using Simulation Models for Financial Engineering 12. Chapter 9: Simulating Physical Phenomena Using Neural Networks 13. Chapter 10: Modeling and Simulation for Project Management 14. Chapter 11: What's Next? 15. Other Books You May Enjoy

Understanding the geometric Brownian motion model

The name Brownian comes from the Scottish botanist Robert Brown who, in 1827, observed, under the microscope, how pollen particles suspended in water moved continuously in a random and unpredictable way. In 1905, it was Einstein who gave a molecular interpretation of the phenomenon of movement observed by Brown. He suggested that the motion of the particles was mathematically describable, assuming that the various jumps were due to the random collisions of pollen particles with water molecules.

Today, Brownian motion is, above all, a mathematical tool in the context of probability theory. This mathematical theory has been used to describe an ever-widening set of phenomena, studied by disciplines that are very different from physics. For instance, the prices of financial securities, the spread of heat, animal populations, bacteria, illness, sound, and light are modeled using the same instrument.

Important note

Brownian motion...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image